Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T17:02:26.470Z Has data issue: false hasContentIssue false

The Development and Applications of Ultrafast Electron Nanocrystallography

Published online by Cambridge University Press:  03 July 2009

Chong-Yu Ruan*
Affiliation:
Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
Yoshie Murooka
Affiliation:
Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
Ramani K. Raman
Affiliation:
Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
Ryan A. Murdick
Affiliation:
Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
Richard J. Worhatch
Affiliation:
Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
Aric Pell
Affiliation:
Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
*
Corresponding author. E-mail: ruan@pa.msu.edu
Get access

Abstract

We review the development of ultrafast electron nanocrystallography as a method for investigating structural dynamics for nanoscale materials and interfaces. Its sensitivity and resolution are demonstrated in the studies of surface melting of gold nanocrystals, nonequilibrium transformation of graphite into reversible diamond-like intermediates, and molecular scale charge dynamics, showing a versatility for not only determining the structures, but also the charge and energy redistribution at interfaces. A quantitative scheme for 3D retrieval of atomic structures is demonstrated with few-particle (<1,000) sensitivity, establishing this nanocrystallographic method as a tool for directly visualizing dynamics within isolated nanomaterials with atomic scale spatio-temporal resolution.

Type
Special Section: Ultrafast Electron Microscopy
Copyright
Copyright © Microscopy Society of America 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alivisatos, A.P. (1996). Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933937.Google Scholar
Anderson, S.G., Musumeci, P., Rosenzweig, J.B., Brown, W.J., England, R.J., Ferrario, M., Jacob, J.S., Thompson, M.C., Travish, G., Tremaine, A.M. & Yoder, R. (2005). Velocity bunching of high brightness electron beams. Phys Rev Spec Top-Accel Beams 8, 014401.Google Scholar
Awschalom, D.D., Divincenzo, D.P. & Smyth, J.F. (1992). Macroscopic quantum effects in nanometer-scale magnets. Science 258, 414421.Google Scholar
Baum, P. & Zewail, A.H. (2006). Breaking resolution limits in ultrafast ulectron diffraction and microscopy. Proc Nat Acad Sci USA 103, 1610516110.Google Scholar
Bhat, R.R., Fischer, D.A. & Genzer, J. (2002). Fabricating planar nanoparticle assemblies with number density gradients. Langmuir 18, 56405643.Google Scholar
Billinge, S.J.L. & Levin, L. (2007). The problem with determining atomic structure at the nanoscale. Science 316, 56565.Google Scholar
Buffat, P. & Borel, J.P. (1976). Size effect on melting temperature of gold particles. Phys Rev A 13, 22872298.Google Scholar
Cao, J., Hao, Z., Park, H., Tao, C., Kau, D. & Blaszczyk, L. (2003). Femtosecond electron diffraction for direct measurement of ultrafast atomic motions. Appl Phys Lett 83, 10441046.Google Scholar
Cavalieri, A.L., Muller, N., Uphues, Th., Yakovlev, V.S., Baltuska, A., Horvath, B., Schmidt, B., Blumel, L., Holzwarth, R., Hendel, S., Drescher, M., Kleineberg, U., Echenique, P.M., Kienberger, R., Krausz, F. & Heinzmann, U. (2007). Attosecond spectroscopy in condensed matter. Nature 449, 10291032.Google Scholar
Doyle, P.A. & Turner, P.S. (1968). Relativistic Hartree-Fock X-ray and electron scattering factors. Acta Cryst A24, 390397.CrossRefGoogle Scholar
Dudek, R.C. & Weber, P.M. (2001). Ultrafast diffraction imaging of the electrocyclic ring-opening reaction of 1,3-cyclohexadiene. J Phys Chem A 105, 41674171.Google Scholar
Dwyer, J.R., Hebeisen, C.T., Ernstorfer, R., Harb, M., Deyirmenjian, V.B., Jordan, R.E. & Miller, R.J.D. (2006). Femtosecond electron diffraction: “Making the molecular movie.” Phil Trans R Soc A 364, 741778.Google Scholar
Eberhardt, W. (2002). Clusters as new materials. Surf Sci 500, 242270.CrossRefGoogle Scholar
Ercolessi, F., Andreoni, W. & Tosatti, E. (1991). Melting of small gold particles: Mechanism and size effects. Phys Rev Lett 66, 911914.Google Scholar
Fahy, S., Louie, S.G. & Cohen, M.L. (1986). Pseudopotential total-energy study of the transition from rhombohedral graphite to diamond. Phys Rev B 34, 11911199.Google Scholar
Hakkinen, H., Abbet, W., Sanchez, A., Heiz, U. & Landman, U. (2003). Structural, electronic, and impurity-doping effects in nanoscale chemistry: Supported gold nanoclusters. Angew Chem Int Ed 42, 12971300.Google Scholar
Halas, N.J. & Bokor, J. (1989). Surface recombination on the Si(111) 2 × 1 surface. Phys Rev Lett 62, 16791689.Google Scholar
Hargittai, I. & Hargittai, M. (1988). Stereochemical Applications of Gas-Phase Electron Diffraction. New York: Wiley-VCH.Google Scholar
Hartland, G.V., Hu, M. & Sader, J.E. (2003). Softening of the symmetric breathing mode in gold particles by laser-induced heating. Phys Chem B 107, 74727478.Google Scholar
Haruta, M. (1997). Size- and support-dependency in the catalysis of gold. Catalysis Today 36, 153166.Google Scholar
Hommelhoff, P., Sortais, Y., Aghajani, A.-T. & Kasevich, M.A. (2006). Field emission tip as a nanometer source of free electron femtosecond pulses. Phys Rev Lett 96, 077401.CrossRefGoogle ScholarPubMed
Iijima, S. & Ichihashi, T. (1986). Structural instability of ultrafine particles of metals. Phys Rev Lett 56, 616619.CrossRefGoogle ScholarPubMed
Ino, S. & Ogawa, J. (1967). Multiply twinned particles at earlier stages of gold film formation on alkalihalide crystals. J Phys Soc Jpn 22, 13651374.Google Scholar
Ishioka, K., Hase, M., Kitajima, M. & Ushida, K. (2001). Ultrafast carrier and phonon dynamics in ion-irradiated graphite. Appl Phys Lett 78, 39653967.CrossRefGoogle Scholar
Kampfrath, T., Perfetti, L., Schapper, F., Frischkorn, C. & Wolf, M. (2005). Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite. Phys Rev Lett 95, 187403.Google Scholar
Kern, W. & Puotinen, D.A. (1970). Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology. RCA Review 31, 187206.Google Scholar
King, W.E., Campbell, G.H., Frank, A., Reed, B., Schmerge, J.F., Siwick, B.J., Stuart, B.C. & Weber, P.M. (2005). Ultrafast electron microscopy in materials science, biology, and chemistry. J Appl Phys 97, 111101111127.Google Scholar
Klein, D.L., McEuen, P.L., Katari, J.E.B., Roth, R. & Alivisatos, A.P. (1996). An approach to electrical studies of single nanocrystals. Appl Phys Lett 68, 25742576.Google Scholar
Lewis, L.J., Jensen, P. & Barrat, J.-L. (1997). Melting, freezing, and coalescence of gold nanoclusters. Phys Rev B 56, 22482257.Google Scholar
Link, S. & El-Sayed, M.A. (2001). Spectroscopic determination of the melting energy of a gold nanorod. J Chem Phys 114, 23622368.Google Scholar
Liu, S., Zhu, T., Hu, R. & Liu, Z. (2002). Evaporation-induced self-assembly of gold nanoparticles into a highly organized two-dimensional array. Phys Chem Chem Phys 4, 60596062.CrossRefGoogle Scholar
Lobastov, V.A., Srinivasan, R. & Zewail, A.H. (2005). Four-dimensional ultrafast electron microscopy. Proc Nat Acad Sci USA 102, 70697073.CrossRefGoogle ScholarPubMed
Mackay, A.L. (1962). A dense non-crystallographic packing of equal sphere. Acta Cryst 15, 916918.CrossRefGoogle Scholar
Mao, W.L., Mao, H.-K., Eng, P.J., Trainor, T.P., Newville, M., Kao, C.-C., Heinz, D.L., Shu, J., Meng, Y. & Hemley, R.J. (2003). Bonding changes in compressed superhard graphite. Science 302, 425427.CrossRefGoogle ScholarPubMed
Marks, L.D. (1994). Experimental studies of small particle structures. Rep Prog Phys 57, 603649.Google Scholar
Marsi, M., Belkhou, R., Grupp, C., Panaccione, G., Taleb-Ibrahimi, A., Nahon, L., Garzella, D., Renault, E., Roux, R., Couprie, M.E. & Billardon, M. (2000). Transient charge carrier distribution at UV-photoexcited SiO2/Si Interfaces. Phys Rev B 61, R5070R5073.CrossRefGoogle Scholar
McGreevy, R.L. (2001). Reverse Monte Carlo modeling. J Phys: Condens Matter 13, R877R913.Google Scholar
Meguro, T., Hida, A., Suzuki, M., Koguchi, Y., Takai, H., Yamamoto, Y., Maeda, K. & Aoyagi, Y. (2001). Creation of nanodiamonds by single impacts of highly charged ions upon graphite. Appl Phys Lett 79, 38663868.Google Scholar
Mishina, T., Nitta, K. & Masumoto, Y. (2000). Coherent lattice vibration of interlayer shearing mode of graphite. Phys Rev B 62, 29082911.CrossRefGoogle Scholar
Murdick, R.A., Raman, R.K., Murooka, Y. & Ruan, C.-Y. (2008). Photovoltage dynamics of the hydroxylated Si(111) surface investigated by ultrafast electron diffraction. Phys Rev B 77, 245329.CrossRefGoogle Scholar
Nakayama, H. & Katayama-Yoshida, H. (2003). Direct conversion of graphite into diamond through electronic excited states. J Phys-Condens Mat 15, R1077R1091.Google Scholar
Peng, L.-M., Dudarev, S.L. & Whelan, M.J. (2004). High Energy Electron Diffraction and Microscopy. Oxford, U.K.: Oxford University Press.Google Scholar
Plech, A., Cerna, R., Kotaidis, V., Hudert, F., Bartels, A. & Dekorsy, T. (2007). A surface phase transition of supported gold nanoparticles. Nano Lett 7, 10261031.Google Scholar
Plech, A., Kotaidis, V., Gresillon, S., Dahmen, C. & Von Plessen, G. (2004). Laser-induced heating and melting of gold nanoparticles studied by time-resolved X-ray scattering. Phys Rev B 70, 195423.CrossRefGoogle Scholar
Raman, R.K., Murooka, Y., Ruan, C.-Y., Yang, T., Berber, S. & Tománek, D. (2008). Direct observation of optically induced transient structures in graphite using ultrafast electron crystallography. Phys Rev Lett 101, 077401.Google Scholar
Ruan, C.-Y., Murooka, Y., Raman, R.K. & Murdick, R.A. (2007). Dynamics of size-selected gold nanoparticles studied by ultrafast electron nanocrystallography. Nano Lett 7, 12901296.Google Scholar
Ruan, C.-Y., Vigliotti, F., Lobastov, V.A., Chen, S.Y. & Zewail, A.H. (2004). Ultrafast electron crystallography: Transient structures of molecules, surfaces, and phase transitions. Proc Natl Acad Sci USA 101, 11231128.Google Scholar
Sato, T., Ahmed, H., Brown, D. & Johnson, B.F.G. (1997a). Single electron transistor using a molecularly linked gold colloidal particle chain. J Appl Phys 82, 696701.CrossRefGoogle Scholar
Sato, T., Brown, D. & Johnson, B.F.G. (1997b). Nucleation and growth of nano-gold colloidal lattices. Chem Commun 11, 10071008.Google Scholar
Scandolo, S., Bernasconi, M., Chiarotti, G.L., Focher, P. & Tosatti, E. (1995). Pressure-induced transformation path for graphite to diamond. Phys Rev Lett 74, 40154018.CrossRefGoogle ScholarPubMed
Schmitt, J., Mächtle, P., Eck, D., Möhwald, H. & Helm, C.A. (1999). Preparation and optical properties of colloidal gold monolayers. Langmuir 15, 32563266.Google Scholar
Shipway, A.N., Katz, E. & Willner, I. (2000). Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Chem Phys Chem 1, 1852.Google Scholar
Siwick, B.J., Dwyer, J.R., Jordan, R.E. & Miller, R.J.D. (2003). An atomic-level view of melting using femtosecond electron diffraction. Science 302, 13821385.Google Scholar
Srinivasan, R., Lobastov, V.A., Ruan, C.-Y. & Zewail, A.H. (2003). Ultrafast electron diffraction (UED)—A new development for the 4D determination of transient molecular structures. Helv Chim Acta 86, 17611799.Google Scholar
Touloukian, Y.S., Kirby, R.K., Taylor, R.E. & Desai, P.D. (1975). Thermal Expansion: Metallic Elements and Alloys. New York: IFI/Plenum.Google Scholar
van Oudheusden, T., de Jong, E.F., van der Geer, S.B., Op 't Root, W.P.E.M., Luiten, O.J. & Siwick, B.J. (2007). Electron source concept for single-shot fs electron diffraction in the 100 keV range. J Appl Phys 102, 0943501.Google Scholar
Wales, D.J. (2000). Structure, dynamics, and thermodynamics of clusters: Tales from topographic potential surfaces. Science 271, 925929.Google Scholar
Wang, N., Rokhlin, S.I. & Farson, D.F. (2008). Nonhomogeneous surface premelting of Au nanoparticles. Nanotech 19, 415701.Google Scholar
Wang, W., Lee, T. & Reed, M.A. (2005). Electron tunnelling in self-assembled monolayers. Rep Prog Phys 68, 523544.Google Scholar
Warren, B.E. (1990). X-Ray Diffraction. Mineola, NY: Dover Publications.Google Scholar
Westcott, S.L., Oldenburg, S.J., Lee, T.R. & Halas, N.J. (1998). Formation and adsorption of clusters of gold nanoparticles onto functionalized silica nanoparticle surfaces. Langmuir 14, 53965401.Google Scholar
Whetten, R.L., Khoury, J.T., Alvarez, M.M., Murthy, S., Vezmar, I., Wang, Z.L., Stephens, P.W., Cleveland, C.L., Luedtke, W.D. & Landman, U. (1996). Nanocrystal gold molecules. Adv Mater 8, 428433.Google Scholar
Williams, P. (1987). Motion of small gold clusters in the electron microscope. Appl Phys Lett 50, 17601762.Google Scholar
Williamson, J.C., Cao, J., Ihee, H., Frey, H. & Zewail, A.H. (1997). Clocking transient chemical changes by ultrafast electron diffraction. Nature 386, 159162.CrossRefGoogle Scholar
Williamson, J.C. & Zewail, A.H. (1993). Ultrafast electron diffraction. Velocity mismatch and temporal resolution in crossed-beam experiments. Chem Phys Lett 209, 1016.Google Scholar
Yang, G.W. & Wang, J.B. (2001). Pulsed-laser induced transformation path of graphite to diamond via an intermediate rhombohedral graphite. Appl Phys A: Mater Sci Process 72, 475479.CrossRefGoogle Scholar
Zanchet, D., Tolentino, H., Martins Alves, M.C., Alves, O.L. & Ugarte, D. (2000). Interatomic distance contraction in thiol-passivated gold nanoparticles. Chem Phys Lett 157, 167174.Google Scholar