Skip to main content
Log in

QLEDs for displays and solid-state lighting

  • Quantum dot light-emitting devices
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The mainstream commercialization of colloidal quantum dots (QDs) for light-emitting applications has begun: Sony televisions emitting QD-enhanced colors are now on sale. The bright and uniquely size-tunable colors of solution-processable semiconducting QDs highlight the potential of electroluminescent QD light-emitting devices (QLEDs) for use in energy-efficient, high-color-quality thin-film display and solid-state lighting applications. Indeed, this year’s report of record-efficiency electrically driven QLEDs rivaling the most efficient molecular organic LEDs, together with the emergence of full-color QLED displays, foreshadow QD technologies that will transcend the optically excited QD-enhanced products already available. In this article, we discuss the key advantages of using QDs as luminophores in LEDs and outline the 19-year evolution of four types of QLEDs that have seen efficiencies rise from less than 0.01% to 18%. With an emphasis on the latest advances, we identify the key scientific and technological challenges facing the commercialization of QLEDs. A quantitative analysis, based on published small-scale synthetic procedures, allows us to estimate the material costs of QDs typical in light-emitting applications when produced in large quantities and to assess their commercial viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Y. Shirasaki, G.J. Supran, M.G. Bawendi, V. Bulović, Nat. Photonics 7, 13 (2013).

    Google Scholar 

  2. D.J. Norris, M.G. Bawendi, L.E. Brus, Molecular Electronics: A “Chemistry for the 21st Century” Monograph, Chap. 9 (Blackwell Science, NY, 1997).

    Google Scholar 

  3. P.O. Anikeeva, J.E. Halpert, M.G. Bawendi, V. Bulović, Nano Lett. 9, 2532 (2009).

    Google Scholar 

  4. Y.H. Niu, A.M. Munro, Y.-J. Cheng, Y.Q. Tian, M.S. Liu, J.L. Zhao, J.A. Bardecker, I. Jen-La Plante, D.S. Ginger, A.K.-Y. Jen, Adv. Mater. 19, 3371 (2007).

    Google Scholar 

  5. L. Qian, Y. Zheng, J. Xue, P.H. Holloway, Nat. Photonics 5, 543 (2011).

    Google Scholar 

  6. Q. Sun, Y.A. Wang, L.S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, Y. Li, Nat. Photonics 1, 717 (2007).

    Google Scholar 

  7. J. Kwak, W.K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Yoon, K. Char, S. Lee, C. Lee, Nano Lett. 12, 2362 (2012).

    Google Scholar 

  8. V. Wood, V. Bulović, Nano Reviews 1, 5202, doi: 10.3402/nano.v1i0.5202 (2010).

    Google Scholar 

  9. K. Bourzac, Nature 493, 283 (2013).

    Google Scholar 

  10. S. Coe-Sullivan, W. Liu, P. Allen, J.S. Steckel, ECS J. Solid State Sci. Technol. 2, R3026 (2013).

    Google Scholar 

  11. J.A. Chen, “High-Efficiency Wide-Color-Gamut Solid-State Backlight System for LCDs Using Quantum-Dot Enhancement Film,” SID Display Week 2012 (2012).

  12. L. Sun, J.J. Choi, D. Stachnik, A.C. Bartnik, B.-R. Hyun, G.G. Malliaras, T. Hanrath, F.W. Wise, Nat. Nanotechnol. 7, 369 (2012).

    Google Scholar 

  13. G. Konstantatos, C. Huang, L. Levina, Z. Lu, E.H. Sargent, Adv. Funct. Mater. 15, 1865 (2005).

    Google Scholar 

  14. G.J. Supran, K.W. Song, G.W. Hwang, R.E. Correa, J. Scherer, E.A. Dauler, Y. Shirasaki, M.G. Bawendi, V. Bulović, “High-Efficiency and Brightness Near-Infrared Quantum-Dot LEDs Using Core-Shell (PbS-CdS) Colloidal Quantum-Dots,” presented at the MRS Spring Meeting, San Francisco, CA (2013).

  15. J.A. Hollingsworth, V.I. Klimov, Nanocrystal Quantum Dots, Second Edition (CRC Press, NY, 2010).

    Google Scholar 

  16. O. Chen, J. Zhao, V.P. Chauhan, J. Cui, C. Wong, D.K. Harris, H. Wei, H.-S. Han, D. Fukumura, R.K. Jain, M.G. Bawendi, Nat. Mater. 12, 1 (2013).

    Google Scholar 

  17. J.R. Sommer, R.T. Farley, K.R. Graham, Y. Yang, J.R. Reynolds, J. Xue, K.S. Schanze, ACS Applied Materials & Interfaces 1, 274 (2009).

    Google Scholar 

  18. J.M. Pietryga, D.J. Werder, D.J. Williams, J.L. Casson, R.D. Schaller, V.I. Klimov, J.A. Hollingsworth, J. Am. Chem. Soc. 130, 4879 (2008).

    Google Scholar 

  19. E.H. Sargent, Adv. Mater. 17, 515 (2005).

    Google Scholar 

  20. A.L. Rogach, A. Eychmüller, S.G. Hickey, S.V. Kershaw, Small 3, 536 (2007).

    Google Scholar 

  21. J. Oliver, BCC Research paper NAN027C, Quantum Dots: Global Market Growth and Future Commercial Prospects (2011).

  22. www.displaysearch.com.

  23. V.L. Colvin, M.C. Schlamp, A.P. Alivisatos, Nature 370, 354 (1994).

    Google Scholar 

  24. B.O. Dabbousi, M.G. Bawendi, O. Onitsuka, M.F. Rubner, Appl. Phys. Lett. 66, 1316 (1995).

    Google Scholar 

  25. S. Coe, W.-K. Woo, M.G. Bawendi, V. Bulović, Nature 420, 800 (2002).

    Google Scholar 

  26. L. Kim, P.O. Anikeeva, S.A. Coe-Sullivan, J.S. Steckel, M.G. Bawendi, V. Bulović, Nano Lett. 8, 4513 (2008).

    Google Scholar 

  27. J.S. Steckel, P. Snee, S. Coe-Sullivan, J.P. Zimmer, J.E. Halpert, P. Anikeeva, L.-A. Kim, V. Bulović, M.G. Bawendi, Angew. Chem. 45, 5796 (2006).

    Google Scholar 

  28. A. Rizzo, M. Mazzeo, M. Palumbo, G. Lerario, S. D’Amone, R. Cingolani, G. Gigli, Adv. Mater. 20, 1886 (2008).

    Google Scholar 

  29. A.H. Mueller, M.A. Petruska, M. Achermann, D.J. Werder, E.A. Akhadov, D.D. Koleske, M.A. Hoffbauer, V.I. Klimov, Nano Lett. 5, 1039 (2005).

    Google Scholar 

  30. M. Achermann, M.A. Petruska, S. Kos, D.L. Smith, D.D. Koleske, V.I. Klimov, Nature 429, 642 (2004).

    Google Scholar 

  31. M.J. Panzer, K.E. Aidala, P.O. Anikeeva, J.E. Halpert, M.G. Bawendi, V. Bulović, Nano Lett. 10, 2421 (2010).

    Google Scholar 

  32. P.O. Anikeeva, C.F. Madigan, J.E. Halpert, M.G. Bawendi, V. Bulović, Phys. Rev. B 78, 085434 (2008).

    Google Scholar 

  33. R.H. Friend, R.W. Gymer, A.B. Holmes, J.H. Burroughes, R.N. Marks, C. Taliani, D.D.C. Bradley, D.A. Dos Santos, J.L. Bredas, M. Lögdlund, W.R. Salaneck, Nature 397, 121 (1999).

    Google Scholar 

  34. P.E. Burrows, V. Bulović, S.R. Forrest, L.S. Sapochak, D.M. McCarty, Appl. Phys. Lett. 65, 2922 (1994).

    Google Scholar 

  35. J.M. Caruge, J.E. Halpert, V. Wood, V. Bulović, M.G. Bawendi, Nat. Photonics 2, 247 (2008).

    Google Scholar 

  36. V. Wood, M.J. Panzer, J.E. Halpert, J.-M. Caruge, M.G. Bawendi, V. Bulović, ACS Nano 3, 3581 (2009).

    Google Scholar 

  37. S.H. Cho, J. Sung, I. Hwang, R.H. Kim, Y.S. Choi, S.S. Jo, T.W. Lee, C. Park, Adv. Mater. 24, 4540 (2012).

    Google Scholar 

  38. J.W. Stouwdam, R.A.J. Janssen, J. Mater. Chem. 18, 1889 (2008).

    Google Scholar 

  39. J.-M. Caruge, J.E. Halpert, V. Bulović, M.G. Bawendi, Nano Lett. 6, 2991 (2006).

    Google Scholar 

  40. B.S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen J. Steckel, V. Bulović, M.G. Bawendi, S. Coe-Sullivan, P.T. Kazlas, Nat. Photonics 7, 407 (2013).

    Google Scholar 

  41. R. Meerheim, S. Scholz, S. Olthof, G. Schwartz, S. Reineke, K. Walzer, K. Leo, J. Appl. Phys. 104, 014510 (2008).

    Google Scholar 

  42. R. Meerheim, M. Furno, S. Hofmann, B. Lüssem, K. Leo, Appl. Phys. Lett. 97, 253305 (2010).

    Google Scholar 

  43. T.-H. Kim, K.-S. Cho, E.K. Lee, J.S. Lee, J. Chae, J.W. Kim, D.H. Kim, J.-Y. Kwon, G. Amaratunga, S.Y. Lee, B.L. Choi, Y. Kuk, J.M. Kim, K. Kim, Nat. Photonics 5, 176 (2011).

    Google Scholar 

  44. P.O. Anikeeva, J.E. Halpert, M.G. Bawendi, V. Bulović, Nano Lett. 7, 2196 (2007).

    Google Scholar 

  45. Y.Q. Li, A. Rizzo, R. Cingolani, G. Gigli, Adv. Mater. 18, 2545 (2006).

    Google Scholar 

  46. S. Coe-Sullivan, OECD/NNI Symposium, QD Vision, Inc. presenting work from AFOSR grant number FA9550–07-C-0056 (2012).

  47. G. Qian, Z. Zhong, M. Luo, D. Yu, Z. Zhang, Z.Y. Wang, D. Ma, Adv. Mater. 21, 111 (2009).

    Google Scholar 

  48. E.J.D. Klem, L. Levina, E.H. Sargent, Appl. Phys. Lett. 87, 053101 (2005).

    Google Scholar 

  49. Y.T. Lim, S. Kim, A. Nakayama, N.E. Stott, M.G. Bawendi, J.V. Frangioni, Mol. Imaging 2, 50 (2003).

    Google Scholar 

  50. S. Kim, Y.T. Lim, E.G. Soltesz, A.M. De Grand, J. Lee, A. Nakayama, J.A. Parker, T. Mihaljevic, R.G. Laurence, D.M. Dor, L.H. Cohn, M.G. Bawendi, J.V. Frangioni, Nat. Biotechnol. 22, 93 (2004).

    Google Scholar 

  51. I.L. Medintz, H.T. Uyeda, E.R. Goldman, H. Mattoussi, Nat. Mater. 4, 435 (2005).

    Google Scholar 

  52. M.F. Frasco, N. Chaniotakis, Sensors 9, 7266 (2009).

    Google Scholar 

  53. N. Tessler, V. Medvedev, M. Kazes, S. Kan, U. Banin, Science 295, 1506 (2002).

    Google Scholar 

  54. K.N. Bourdakos, D.M.N.M. Dissanayake, T. Lutz, S.R.P. Silva, R.J. Curry, Appl. Phys. Lett. 92, 153311 (2008).

    Google Scholar 

  55. L. Bakueva, S. Musikhin, M.A. Hines, T.-W.F. Chang, M. Tzolov, G.D. Scholes, E.H. Sargent, Appl. Phys. Lett. 82, 2895 (2003).

    Google Scholar 

  56. K.R. Choudhury, D.W. Song, F. So, Org. Electron. 11, 23 (2010).

    Google Scholar 

  57. O. Solomeshch, A. Kigel, A. Saschiuk, V. Medvedev, A. Aharoni, A. Razin Y. Eichen, U. Banin, E. Lifshitz, N. Tessler, J. Appl. Phys. 98, 074310 (2005).

    Google Scholar 

  58. G.J. Supran, K.W. Song, G.W. Hwang, R.E. Correa, J. Scherer, E.A. Dauler, Y. Shirasaki, M.G. Bawendi, V. Bulović, Patent Application 61/735, 344 (2012).

  59. K.-Y. Cheng, R. Anthony, U.R. Kortshagen, R.J. Holmes, Nano Lett. 10, 1154 (2010).

    Google Scholar 

  60. K.-Y. Cheng, R. Anthony, U.R. Kortshagen, R.J. Holmes, Nano Lett. 11, 1952 (2011).

    Google Scholar 

  61. Y.Q. Zhang, X.A. Cao, Appl. Phys. Lett. 97, 253115 (2010).

    Google Scholar 

  62. W.K. Bae, J. Kwak, J. Lim, D. Lee, M.K. Nam, K. Char, C. Lee, S. Lee, Nano Lett. 10, 2368 (2010).

    Google Scholar 

  63. P. Jing, J. Zheng, Q. Zeng, Y. Zhang, X. Liu, X. Liu, X. Kong, J. Zhao, J. Appl. Phys. 105, 044313 (2009).

    Google Scholar 

  64. Y. Shirasaki, G.J. Supran, W.A. Tisdale, V. Bulović, Phys. Rev. Lett. 110, 217403 (2013).

    Google Scholar 

  65. D. Bozyigit, O. Yarema, V. Wood, Adv. Funct. Mater. 23, 3024 (2013).

    Google Scholar 

  66. J. Zhao, J.A. Bardecker, A.M. Munro, M.S. Liu, Y. Niu, I.-K. Ding, J. Luo, B. Chen, A.K.-Y. Jen, D.S. Ginger, Nano Lett. 6, 463 (2006).

    Google Scholar 

  67. J.W. Stouwdam, R.A.J. Janssen, Adv. Mater. 21, 2916 (2009).

    Google Scholar 

  68. H. Huang, A. Dorn, G.P. Nair, V. Bulović, M.G. Bawendi, Nano Lett. 7, 3781 (2007).

    Google Scholar 

  69. Z.-B. Wang, H.-C. Zhang, J.-Y. Zhang, Chin. Phys. Lett. 27, 127803 (2010).

    Google Scholar 

  70. L. Sun, A. Bartnik, B. Hyun, F. Wise, J. Reed, J. Slinker, G. Malliaras, Y. Zhong, L. Bao, H. Abruna, Conference on Lasers and Electro-Optics (Optical Society of America), paper CThS6, doi:10.1109/CLEO.2008.4551522 (2008).

  71. W.-K. Woo, K.T. Shimizu, M.V. Jarosz, R.G. Neuhauser, C.A. Leatherdale, M.A. Rubner, M.G. Bawendi, Adv. Mater. 14, 1068 (2002).

    Google Scholar 

  72. C. Galland, Y. Ghosh, A. Steinbrück, M. Sykora, J.A. Hollingsworth, V.I. Klimov, H. Htoon, Nature 479, 203 (2011).

    Google Scholar 

  73. A. Pandey, P. Guyot-Sionnest, J. Phys. Chem. Lett. 1, 45 (2010).

    Google Scholar 

  74. T.-W.F. Chang, S. Musikhin, L. Bakueva, L. Levina, M.A. Hines, P.W. Cyr E.H. Sargent, Appl. Phys. Lett. 84, 4295 (2004).

    Google Scholar 

  75. M. Achermann, M.A. Petruska, D.D. Koleske, M.H. Crawford, V.I. Klimov, Nano Lett. 6, 1396 (2006).

    Google Scholar 

  76. A. Shik, G. Konstantatos, E.H. Sargent, H.E. Ruda, J. Appl. Phys. 94, 4066 (2003).

    Google Scholar 

  77. S. Coe-Sullivan, “M-5: Nanotechnology for Displays: A Potential Breakthrough for OLED Displays and LCDs (QD Vision, Inc.),” Display Week 2012.

  78. K.-S. Cho, E.K. Lee, W. Joo, E. Jang, T. Kim, S.J. Lee, S. Kwon, J.Y. Han, B. Kim, B.L. Choi, J.M. Kim, Nat. Photonics 3, 341 (2009).

    Google Scholar 

  79. R. Meerheim, S. Scholz, S. Olthof, G. Schwartz, S. Reineke, K. Walzer, K. Leo, J. Appl. Phys. 104, 014510 (2008).

    Google Scholar 

  80. T.P. Osedach, T.L. Andrew, V. Bulović, Energy Environ. Sci. 6, 711 (2013).

    Google Scholar 

  81. C.B. Murray, D.J. Norris, M.G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993).

    Google Scholar 

  82. M.A. Hines, P. Guyot-Sionnest, J. Phys. Chem. 100, 468 (1996).

    Google Scholar 

  83. M.G. Helander, Z.B. Wang, J. Qiu, M.T. Greiner, D.P. Puzzo, Z.W. Liu, Z.H. Lu, Science 332, 944 (2011).

    Google Scholar 

  84. US Department of Energy, “Solid-State Lighting Research and Development: Manufacturing Roadmap” (2012).

  85. H.M. Haverinen, R.A. Myllylä, G.E. Jabbour, J. Display Technol. 6, 87 (2010).

    Google Scholar 

  86. M.J. Panzer, V. Wood, S.M. Geyer, M.G. Bawendi, V. Bulović, J. Display Technol. 6, 90 (2010).

    Google Scholar 

  87. J.J. Shiang, A.V. Kadavanich, R.K. Grubbs, A.P. Alivisatos, J. Phys. Chem. 99, 17417 (1995).

    Google Scholar 

  88. B.O. Dabbousi, M.G. Bawendi, O. Onitsuka, M.F. Rubner, Appl. Phys. Lett. 66, 1316 (1995).

    Google Scholar 

  89. H. Mattoussi, L.H. Radzilowski, B.O. Dabbousi, E.L. Thomas, M.G. Bawendi M.F. Rubner, J. Appl. Phys. 83, 7965 (1998).

    Google Scholar 

  90. M.C. Schlamp, X. Peng, A.P. Alivisatos, J. Appl. Phys.82, 5837 (1997).

    Google Scholar 

  91. S. Coe-Sullivan, J.S. Steckel, W.-K. Woo, M.G. Bawendi, V. Bulović, Adv. Funct. Mater. 15, 1117 (2005).

    Google Scholar 

  92. S. Coe-Sullivan, “12.2: Quantum-Dot Light-Emitting Diodes for Near-to-Eye and Direct-View Display Applications (QD Vision, Inc.),” Display Week 2011

  93. C.W.Tang, S.A. VanSlyke, C.H. Chen, J. Appl. Phys. 65, 3610 (1989).

    Google Scholar 

  94. Y. Hamada, H. Kanno, T. Tsujioka, H. Takahashi, T. Usuki, Appl. Phys. Lett. 75, 1682 (1999).

    Google Scholar 

  95. B. Chen, X. Lin, L. Cheng, C.-S. Lee, W.A. Gambling, S.T. Lee, J. Phys. D: Appl. Phys. 34, 30 (2001).

    Google Scholar 

  96. M. Leung, C.-C. Chang, M.-H. Wu, K.-H. Chuang, J.-H. Lee, S.-J. Shieh S.-C. Lin, C.-F. Chiu, Org. Lett. 8, 2623 (2006).

    Google Scholar 

  97. J.S. Steckel, S. Coe-Sullivan, V. Bulovic, M.G. Bawendi, Adv. Mater. 15, 1862 (2003).

    Google Scholar 

  98. D.S. Koktysh, N. Gaponik, M. Reufer, J. Crewett, U. Scherf, A. Eychmüller J.M. Lupton, A.L. Rogach, J. Feldmann, ChemPhysChem 5, 1435 (2004).

    Google Scholar 

  99. É. O’Connor, A. O’Riordan, H. Doyle, S. Moynihan, A. Cuddihy, G. Redmond Appl. Phys. Lett. 86, 201114 (2005).

    Google Scholar 

  100. X. Ma, F. Xu, J. Benavides, S.G. Cloutier, Org. Electron. 13, 525 (2012).

    Google Scholar 

  101. N. Zhao, TP Osedach, L.-Y. Chang, S.M. Geyer, D. Wanger, M.T. Binda, A.C. Arango, M.G. Bawendi, V. Bulović, ACS Nano 4, 3743 (2010).

    Google Scholar 

  102. T. Horihata, K. Okamoto, J. Hidaka, H. Einaga, Bull. Chem. Soc. Jpn. 61, 2999 (1988).

    Google Scholar 

  103. M. Furugori, S. Igawa, J. Kamatani, S. Miura, H. Mizutani, T. Moriyama S. Okada, T. Takiguchi, A. Tsuboyama, Metal Coordination Compound and Electroluminescence Device, US Patent 20030235712 (2003).

  104. US Department of Health and Human Services, “Toxicological Profile for Cadmium” (2012).

  105. K.-H. Lee, J.-H. Lee, W.-S. Song, H. Ko, C. Lee, J.-H. Lee, H. Yang,ACS Nano, doi: 10.1021/nn402870e (2012).

Download references

Acknowledgments

This article is based on work supported by the Center for Excitonics, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award Number DE-SC0001088. K.W.S. acknowledges support from an NSF Graduate Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey J. Supran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Supran, G.J., Shirasaki, Y., Song, K.W. et al. QLEDs for displays and solid-state lighting. MRS Bulletin 38, 703–711 (2013). https://doi.org/10.1557/mrs.2013.181

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2013.181

Navigation