Skip to main content
Log in

Magnetoresistive sensors and magnetic nanoparticles for biotechnology

  • Outstanding Meeting Paper
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Magnetoresistive biosensors use a new detection method for molecular recognition reactions based on two recently developed techniques and devices: Magnetic markers and XMR sensors, where XMR means either giant magnetoresistance (GMR) or tunneling magnetoresistance (TMR). The markers are specifically attached to the target molecules, and their magnetic stray field is picked up by an embedded magnetoresistive sensor as a change of the electrical resistance. Compared to established, e.g., fluorescent, detection methods, magnetic biosensors have a number of advantages, including low molecular detection limits, flexibility, and the direct availability of an electronic signal suitable for further automated analysis. This makes them a promising choice for the detection units of future widespread and easy-to-use lab-on-a-chip systems or biochips. In this article, we discuss recent advances in this field and compare possible approaches toward single molecule detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Ruderman and C. Kittel: Indirect exchange coupling of nuclear magnetic moments by conduction electrons. Phys. Rev. 96 99 (1954).

    Article  CAS  Google Scholar 

  2. T. Kasuya: A theory of metallic ferro and antiferromagnetism on Zerner’s model. Prog. Theor. Phys. 16 45 (1956).

    Article  Google Scholar 

  3. K. Yosida: Magnetic properties of Cu–Mn alloys. Phys. Rev. Lett. 106 893 (1957).

    Google Scholar 

  4. P. Grünberg R. Schreiber Y. Pang M.B. Brodsky and H. Sowers: Layered magmnetic structures—Evidence for antiferromagnetic coupling of Fe layers across Cr interlayers. Phys. Rev. Lett. 57 2442 (1986).

    Article  Google Scholar 

  5. M.N. Baibich J.M. Broto A. Fert Van F.N. Dau F. Petroff P. Eitenne G. Creuzet A. Friedrich and J. Chazelas: Giant magnetoresistance of (001)Fe/(001) Cr magnetic superlattices. Phys. Rev. Lett. 61 2472 (1988).

    Article  CAS  Google Scholar 

  6. M. Julliere: Tunneling between ferromagnetic films. Phys. Lett. A 54 225 (1975).

    Article  Google Scholar 

  7. J.S. Moodera L.R. Kinder T.M. Wong and R. Meservey: Large magnetoresistance at room-temperature in ferromagnetic thin-film tunnel-junctions. Phys. Rev. Lett. 74 3273 (1995).

    Article  CAS  Google Scholar 

  8. S.S.P. Parkin: The magic of magnetic multilayers. IBM J. Res. & Dev. 42(1) 3 (1998).

    Article  Google Scholar 

  9. See for example the website of the Robert Bosch GmbH Stuttgart Germany: http://rb-k.bosch.de/de/start/safety.html (Sept. 2005).

  10. G.A. Prinz: Magnetoelectronics. J. Magn. Magn. Mater. 200 57 (1999).

    Article  CAS  Google Scholar 

  11. M.M. Miller G.A. Prinz P. Lubitz L. Hoines J.J. Krebs S.F. Cheng and F.G. Parsons: Novel absolute linear displacement sensor utilizing giant magnetoresistance elements. J. Appl. Phys. 81 4284 (1997).

    Article  CAS  Google Scholar 

  12. Motorola Inc. press release October 2003 http://www.motorola.com/mediacenter/news/detail/0,3158_2591_23,00.html.

  13. D.R. Baselt G.U. Lee M. Natesan S.W. Metzger P.E. Sheehan and R.J. Colton: A biosensor based on magnetoresistance technology. Biosens. Bioelectron. 13 731 (1998).

    Article  CAS  Google Scholar 

  14. R.L. Edelstein C.R. Tamanaha P.E. Sheehan M.M. Miller D.R. Baselt L.J. Whitman and R.J. Colton: The BARC biosensor applied to the detection of biological warfare agents. Biosens. Bioelectron. 14 805 (2000).

    Article  CAS  Google Scholar 

  15. M. Vettese-Dadey: Going their separate ways: A profile of products for cell separation. The Scientist 13 21 (1999).

    Google Scholar 

  16. K. Larsson K. Kriz and D. Kriz: Magnetic transducers in biosensors and bioassays. Analusis. 27 617 (1999).

    Article  CAS  Google Scholar 

  17. C.B. Murray S. Sun W. Gaschler H. Doyle T.A. Betley and C.R. Kagan: Colloidal synthesis of nanocrystals and nanocrystal superlattices. IBM J. Res. & Dev. 45 47 (2001).

    Article  CAS  Google Scholar 

  18. V.F. Puntes K.M. Krishnan and A.P. Alivisatos: Colloidal nanocrystal shape and size control: The case of cobalt. Science 291 2115 (2001).

    Article  CAS  Google Scholar 

  19. D.P. Dinega and M.G. Bawendi: A solution-phase chemical approach to a new crystal structure of cobalt. Angew. Chem. 111 1906 (1999).

    Article  Google Scholar 

  20. S. Sun C.B. Murray and H. Doyle: Controlled assembly of monodisperse cobalt based nanocrystals in Advanced Hard and Soft Magnetic Materials edited by M. Coey L.H. Lewis B.M. Ma T. Schrefl L. Schultz J. Fidler V.G. Harris R. Hasegawa A. Inoue and M. McHenry (Mater. Res. Soc. Symp. Proc. 577 Warrendale PA 1999) p. 385.

    CAS  Google Scholar 

  21. S. Sun C.B. Murray D. Weller L. Folks and A. Moser: Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287 1989 (2000).

    Article  CAS  Google Scholar 

  22. M. Brzeska M. Panhorst P.B. Kamp J. Schotter G. Reiss PüA. hler A. Becker and BrüH. ckl: Detection and manipulation of biomolecules by magnetic carriers. J. Biotechnol. 112 25 (2004).

    Article  CAS  Google Scholar 

  23. TeleChem International Inc.: SuperClean substrate http://www.arrayit.com (accessed September 2005).

  24. D. Voet and J.G. Voet: Biochemie (VCH Verlagsgesellschaft GmbH Weinheim Germany 1994).

    Google Scholar 

  25. J. Schotter P.B. Kamp A. Becker PüA. hler G. Reiss and H. Brückl: Comparison of a prototype magnetoresistive biosensor to standard fluorescent DNA detection. Biosens. Bioelectron. 19 1149 (2004).

    Article  CAS  Google Scholar 

  26. Dynal Biotech: http://www.dynal.no.

  27. Ali-R.A. Zade: Structure and magnetic properties of polymer microspheres filled with magnetite nanoparticles. Inorg. Mater. 40 509 (2004).

    Article  Google Scholar 

  28. Scientific and Clinical Applications of Magnetic Carriers edited by U. Häfeli W. Schütt and J. Teller (Plenum New York 1997).

  29. A.v. Blaaderen van J. Geest and A. Vrij: Monodisperse colloidal silica spheres from tetraalkoxysilanes—Particle formation and growth-mechanism. J. Colloid Interf. Sci. 154 481 (1992).

    Article  Google Scholar 

  30. C.B. Murray C.R. Kagan and M.G. Bawendi: Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Ann. Rev. Mater. Sci. 30 545 (2000).

    Article  CAS  Google Scholar 

  31. A. Hütten D. Sudfeld I. Ennen G. Reiss W. Hachmann U. Heinzmann K. Wojczykowski P. Jutzi W. Saikaly and G. Thomas: New magnetic nanoparticles for biotechnology. J. Biotechnol. 112 91 (2004).

    Article  Google Scholar 

  32. A. de Vries: High force magnetic tweezers for molecular manipulation inside living cells. Ph.D. Thesis University of Twente Enschede The Netherlands (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guenter Reiss.

Additional information

This paper was selected as the Outstanding Meeting Paper for the 2004 MRS Fall Meeting Symposium I Proceedings, Vol. 853E.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reiss, G., Brueckl, H., Huetten, A. et al. Magnetoresistive sensors and magnetic nanoparticles for biotechnology. Journal of Materials Research 20, 3294–3302 (2005). https://doi.org/10.1557/jmr.2005.0409

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2005.0409

Navigation