Skip to main content
Log in

Natural rutile-derived titanate nanofibers prepared by direct hydrothermal processing

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Long titanate nanofibers (typically 10–500 µm in length and 20–50 nm in diameter) were successfully prepared in high yield by the direct hydrothermal processing using natural rutile as a starting material. Fourier transform infrared spectroscopy, transmission electron microscopy, energy dispersive x-ray spectroscopy, electron diffraction, and x-ray diffraction demonstrated that the as-synthesized nanofibers presumably consisted of sodium hydrogen trititanate [(Na,H)2Ti3O7, e.g., Na0.4H1.6Ti3O7] including some hexatitanate-type defects [(Na,H)2Ti6O13]. A partial topotactic condensation model explained their nanostructure well. Although the as-synthesized fibers are defective, they can be cured by a post-heat-treatment in air. The direct hydrothermal treatment for natural rutile will be a promising low-cost process for one-dimensional nanomaterials, which can act not only as a reaction step but also as a purification step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Li and Y.N. Xia: Fabrication of titania nanofibers by electrospinning. Nano Lett. 3, 555 (2003).

    Article  CAS  Google Scholar 

  2. S. Yoo, S.A. Akbar, and K.H. Sandhage: Nanocarving of buld titania crystals into oriented arrays of single-crystal nanofibers via reaction with hydrogen-bearing gas. Adv. Mater. 16, 260 (2004).

    Article  CAS  Google Scholar 

  3. P. Hoyer: Formation of titanium oxide nanotube array. Langmuir 12, 1411 (1996).

    Article  CAS  Google Scholar 

  4. H. Imai, Y. Takei, K. Shimizu, M. Matsuda, and H. Hirashima: Direct preparation of anatase TiO2 nanotubes in porous alumina membranes. J. Mater. Chem. 9, 2971 (1999).

    Article  CAS  Google Scholar 

  5. D. Gong, C.A. Grimes, O.K. Varghese, W.C. Hu, R.S. Singh, Z. Chen, and E.C. Dickey: Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 16, 3331 (2001).

    Article  CAS  Google Scholar 

  6. J. Sun, L. Gao, and Q.H. Zhang: TiO2 tubes synthesized by using ammonium sulfate and carbon nanotubes as templates. J. Mater. Sci. Lett. 22, 339 (2003).

    Article  CAS  Google Scholar 

  7. S. Kobayashi, K. Hanabusa, N. Hamasaki, M. Kimura, H. Shirai, and S. Shinkai: Preparation of TiO2 hollow-fibers using supramolecular assemblies. Chem. Mater. 12, 1523 (2000).

    Article  CAS  Google Scholar 

  8. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara: Formation of titanium oxide nanotube. Langmuir 14, 3160 (1998).

    Article  CAS  Google Scholar 

  9. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara: Titania nanotubes prepared by chemical processing. Adv. Mater. 11, 1307 (1999).

    Article  CAS  Google Scholar 

  10. G.H. Du, Q. Chen, R.C. Che, Z.Y. Yuan, and L.M. Peng: Preparation and structure analysis of titanium oxide nanotubes. Appl. Phys. Lett. 79, 3702 (2001).

    Article  CAS  Google Scholar 

  11. Q. Chen, G.H. Du, S. Zhang, and L.M. Peng: The structure of trititanate nanotubes. Acta Crystallogr. B 58, 587 (2002).

    Article  CAS  Google Scholar 

  12. Q. Chen, W.Z. Zhou, G.H. Du, and L.M. Peng: Trititanate nanotubes made via a single alkali treatment. Adv. Mater. 14, 1208 (2002).

    Article  CAS  Google Scholar 

  13. S. Zhang, L.M. Peng, Q. Chen, G.H. Du, G. Dawson, and W.Z. Zhou: Formation mechanism of H2Ti3O7 nanotubes. Phys. Rev. Lett. 91, 259103 (2003).

    Google Scholar 

  14. X. Sun and Y. Li: Synthesis and characterization of ionexchangeable titanate nanotubes. Chem. Eur. J. 9, 2229 (2003).

    Article  CAS  Google Scholar 

  15. R.Z. Ma, Y. Bando, and T. Sasaki: Nanotubes of lepidocrocite titanates. Chem. Phys. Lett. 380, 577 (2003).

    Article  CAS  Google Scholar 

  16. J. Yang, Z. Jin, X. Wang, W. Li, J. Zhang, S. Zhang, X. Guo and Z. Zhang: Study on composition, structure and formation process of Nanotube Na2Ti2O4(OH)2. Darton Trans. 20, 3398–3901 (2003).

  17. Y. Suzuki and S. Yoshikawa: Synthesis and thermal analyses of TiO2-derived nanotubes prepared by the hydrothermal method. J. Mater. Res. 19, 982 (2004).

    Article  CAS  Google Scholar 

  18. Y. Suzuki, S. Sakulkhaemaruethai, R. Yoshida, and S. Yoshikawa: Heat treatment effect on the structure of TiO2-derived nanotubes prepared by hydrothermal method. Ceram. Trans. 159, 185 (2005).

    CAS  Google Scholar 

  19. A.R. Armstrong, G. Armstrong, J. Canales, and P.G. Bruce: TiO2–B Nanowires. Angew. Chem. Int. Ed. Engl. 43, 2286 (2004).

    Article  CAS  Google Scholar 

  20. G.H. Du, Q. Chen, P.D. Han, Y. Yu, and L.M. Peng: Potassium titanate nanowires: Structure, growth, and optical properties. Phys. Rev. B 67, 035323 (2003).

    Article  Google Scholar 

  21. Y. Fujiki and T. Mitsuhashi: Preparation of K2Ti6O13 fibers and its related composite fibers using natural rutile or anatase ores—As derivatives of K2Ti2O5 fibers. J. Ceram. Soc. Jpn. 96, 1109 (1988), in Japanese.

    Article  CAS  Google Scholar 

  22. J. Hong, J. Cao, J. Sun, H. Li, H. Chen, and M. Wang: Electronic structure of titanium oxide nanotubes. Chem. Phys. Lett. 380, 366 (2003).

    Article  CAS  Google Scholar 

  23. T. Sekino: Does the one-dimensional nanospace in titania nanotubes contribute to the functionalization? in Preprints of the 6th Kansai Branch Forum for Young Scientists and Engineers on Ceramic Studies, The Ceramic Society of Japan, 2003, p. 28 (in Japanese).

    Google Scholar 

  24. G. Busca, G. Ramis, J.M.G. Amores, V.S. Escribano, and P. Piaggio: FT Raman and FTIR studies of titanias and metatitanate powders. J. Chem. Soc., Faraday Trans. 90, 3181 (1994).

    Article  CAS  Google Scholar 

  25. G.W. Peng, S.K. Chen, and H.S. Liu: Infrared-absorption spectra and their correlation with the Ti–O bond-length variations for TiO2 (rutile), Na-titanates, and Na-titanosilicate (natisite, Na2TiOSiO4). Appl. Spectrosc. 49, 1646 (1995).

    Article  CAS  Google Scholar 

  26. T.P. Feist and P.K. Davies: The soft chemical synthesis of TiO2 (B) from layered titanates. J. Solid State Chem. 101, 275 (1992).

    Article  CAS  Google Scholar 

  27. S. Andersson and A.D. Wadsley: The structures of Na2Ti6O13 and Rb2Ti6O13 and the alkali metal titanates. Acta Crystallogr. 15, 194 (1962).

    Article  CAS  Google Scholar 

  28. S. Pavasupree, Y. Suzuki, S. Yoshikawa, and R. Kawahata: Unpublished work.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshikazu Suzuki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, Y., Pavasupree, S., Yoshikawa, S. et al. Natural rutile-derived titanate nanofibers prepared by direct hydrothermal processing. Journal of Materials Research 20, 1063–1070 (2005). https://doi.org/10.1557/JMR.2005.0135

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0135

Navigation