Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-27T09:57:26.470Z Has data issue: false hasContentIssue false

Heat shock protein 90 as a potential drug target against surra

Published online by Cambridge University Press:  10 June 2014

ANKIT K. ROCHANI
Affiliation:
Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
CHANDAN MITHRA
Affiliation:
Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
MEETALI SINGH*
Affiliation:
Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
UTPAL TATU
Affiliation:
Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
*
*Corresponding author: Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India. E-mail: meet@biochem.iisc.ernet.in, meetalisingh@gmail.com

Summary

Trypanosomiasis is caused by Trypanosoma species which affect both human and animal populations and pose a major threat to developing countries. The incidence of animal trypanosomiasis is on the rise. Surra is a type of animal trypanosomiasis, caused by Trypanosoma evansi, and has been included in priority list B of significant diseases by the World Organization of Animal Health (OIE). Control of surra has been a challenge due to the lack of effective drugs and vaccines and emergence of resistance towards existing drugs. Our laboratory has previously implicated Heat shock protein 90 (Hsp90) from protozoan parasites as a potential drug target and successfully demonstrated efficacy of an Hsp90 inhibitor in cell culture as well as a pre-clinical mouse model of trypanosomiasis. This article explores the role of Hsp90 in the Trypanosoma life cycle and its potential as a drug target. It appears plausible that the repertoire of Hsp90 inhibitors available in academia and industry may have value for treatment of surra and other animal trypanosomiasis.

Type
Special Issue Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Banumathy, G., Singh, V., Pavithra, S. R. and Tatu, U. (2003). Heat shock protein 90 function is essential for Plasmodium falciparum growth in human erythrocytes. Journal of Biological Chemistry 278, 1833618345. doi: 10.1074/jbc.M211309200.Google Scholar
Berger, B. J. and Fairlamb, A. H. (1994). Properties of melarsamine hydrochloride (Cymelarsan) in aqueous solution. Antimicrobial Agents and Chemotherapy 38, 12981302. doi: 10.1128/AAC.38.6.1298.Google Scholar
Brandt, G. E., Schmidt, M. D., Prisinzano, T. E. and Blagg, B. S. (2008). Gedunin, a novel hsp90 inhibitor: semisynthesis of derivatives and preliminary structure-activity relationships. Journal of Medicinal Chemistry 51, 64956502. doi: 10.1021/jm8007486.Google Scholar
Desquesnes, M., Bossard, G., Patrel, D., Herder, S., Patout, O., Lepetitcolin, E., Thevenon, S., Berthier, D., Pavlovic, D., Brugidou, R., Jacquiet, P., Schelcher, F., Faye, B., Touratier, L. and Cuny, G. (2008). First outbreak of Trypanosoma evansi in camels in metropolitan France. Veterinary Record 162, 750752. doi: 10.1136/vr.162.23.750.CrossRefGoogle ScholarPubMed
Desquesnes, M., Holzmuller, P., Lai, D. H., Dargantes, A., Lun, Z. R. and Jittaplapong, S. (2013). Trypanosoma evansi and surra: a review and perspectives on origin, history, distribution, taxonomy, morphology, hosts, and pathogenic effects. BioMed Research International 2013, 194176. doi: 10.1155/2013/194176.Google Scholar
Dolgin, E. and Motluk, A. (2011). Heat shock and awe. Nature Medicine 17, 646649. doi: 10.1038/nm0611-646.Google Scholar
Donnelly, A. and Blagg, B. S. (2008). Novobiocin and additional inhibitors of the Hsp90 C-terminal nucleotide-binding pocket. Current Medicinal Chemistry 15, 27022717. doi: 10.2174/092986708786242895.CrossRefGoogle ScholarPubMed
Du, Y., Moulick, K., Rodina, A., Aguirre, J., Felts, S., Dingledine, R., Fu, H. and Chiosis, G. (2007). High-throughput screening fluorescence polarization assay for tumor-specific Hsp90. Journal of Biomolecular Screening 12, 915924. doi: 10.1177/1087057107306067.CrossRefGoogle ScholarPubMed
Dutton, B. L., Kitson, R. R., Parry-Morris, S., Roe, S. M., Prodromou, C. and Moody, C. J. (2014). Synthesis of macrolactam analogues of radicicol and their binding to heat shock protein Hsp90. Organic and Biomolecular Chemistry 12, 13281340. doi: 10.1039/c3ob42211a.CrossRefGoogle ScholarPubMed
El Rayah, I. E., Kaminsky, R., Schmid, C. and El Malik, K. H. (1999). Drug resistance in Sudanese Trypanosoma evansi . Veterinary Parasitology 80, 281287. doi: 10.1016/S0304-4017(98)00221-0.Google Scholar
Fevre, E. M., Coleman, P. G., Welburn, S. C. and Maudlin, I. (2004). Reanalyzing the 1900–1920 sleeping sickness epidemic in Uganda. Emerging Infectious Diseases 10, 567573. doi: 10.3201/eid1004.020626.Google Scholar
Gopalsamy, A., Shi, M., Golas, J., Vogan, E., Jacob, J., Johnson, M., Lee, F., Nilakantan, R., Petersen, R., Svenson, K., Chopra, R., Tam, M. S., Wen, Y., Ellingboe, J., Arndt, K. and Boschelli, F. (2008). Discovery of benzisoxazoles as potent inhibitors of chaperone heat shock protein 90. Journal of Medicinal Chemistry 51, 373375. doi: 10.1021/jm701385c.Google Scholar
Graefe, S. E., Wiesgigl, M., Gaworski, I., Macdonald, A. and Clos, J. (2002). Inhibition of HSP90 in Trypanosoma cruzi induces a stress response but no stage differentiation. Eukaryotic Cell 1, 936943. doi: 10.1128/EC.1.6.936-943.2002.Google Scholar
Janin, Y. L. (2005). Heat shock protein 90 inhibitors. A text book example of medicinal chemistry? Journal of Medicinal Chemistry 48, 75037512. doi: 10.1021/jm050759r.Google Scholar
Jones, C., Anderson, S., Singha, U. K. and Chaudhuri, M. (2008). Protein phosphatase 5 is required for Hsp90 function during proteotoxic stresses in Trypanosoma brucei . Parasitology Research 102, 835844. doi: 10.1007/s00436-007-0817-z.Google Scholar
Joshi, P. P., Shegokar, V. R., Powar, R. M., Herder, S., Katti, R., Salkar, H. R., Dani, V. S., Bhargava, A., Jannin, J. and Truc, P. (2005). Human trypanosomiasis caused by Trypanosoma evansi in India: the first case report. American Journal of Tropical Medicine and Hygiene 73, 491495.Google Scholar
Khandelwal, A., Hall, J. A. and Blagg, B. S. (2013). Synthesis and structure-activity relationships of EGCG analogues, a recently identified Hsp90 inhibitor. Journal of Organic Chemistry 78, 78597884. doi: 10.1021/jo401027r.Google Scholar
Kropf, S. P. and Sa, M. R. (2009). The discovery of Trypanosoma cruzi and Chagas disease (1908–1909): tropical medicine in Brazil. História, Ciências, Saúde-Manguinhos 16 (Suppl. 1), 1334.Google Scholar
Lathers, C. M. (2003). Challenges and opportunities in animal drug development: a regulatory perspective. Nature Reviews Drug Discovery 2, 915918. doi: 10.1038/nrd1229.Google Scholar
Liao, D. and Shen, J. (2010). Studies of quinapyramine-resistance of Trypanosoma brucei evansi in China. Acta Tropica 116, 173177. doi: 10.1016/j.actatropica.2010.08.016.Google Scholar
MacGregor, J. T. and Johnson, I. J. (1977). In vitro metabolic activation of ethidium bromide and other phenanthridinium compounds: mutagenic activity in Salmonella typhimurium . Mutation Research 48, 103107.Google Scholar
Marcu, M. G., Schulte, T. W. and Neckers, L. (2000). Novobiocin and related coumarins and depletion of heat shock protein 90-dependent signaling proteins. Journal of the National Cancer Institute 92, 242248. doi: 10.1093/jnci/92.3.242.Google Scholar
Meyer, K. J. and Shapiro, T. A. (2013). Potent antitrypanosomal activities of heat shock protein 90 inhibitors in vitro and in vivo . Journal of Infectious Diseases 208, 489499. doi: 10.1093/infdis/jit179.Google Scholar
Morgan, H. P., McNae, I. W., Nowicki, M. W., Zhong, W., Michels, P. A., Auld, D. S., Fothergill-Gilmore, L. A. and Walkinshaw, M. D. (2010). The trypanocidal drug suramin and other trypan blue mimetics are inhibitors of pyruvate kinases and bind to the adenosine site. Journal of Biological Chemistry 286, 3123231240. doi: 10.1074/jbc.M110.212613.Google Scholar
Nageshan, R. K., Roy, N., Hehl, A. B. and Tatu, U. (2011). Post-transcriptional repair of a split heat shock protein 90 gene by mRNA trans-splicing. Journal of Biological Chemistry 286, 71167122. doi: 10.1074/jbc.C110.208389.Google Scholar
Nakajima-Shimada, J., Hirota, Y. and Aoki, T. (1996). Inhibition of Trypanosoma cruzi growth in mammalian cells by purine and pyrimidine analogs. Antimicrobial Agents and Chemotherapy 40, 24552458.Google Scholar
Njiru, Z. K., Constantine, C. C., Ndung'u, J. M., Robertson, I., Okaye, S., Thompson, R. C. and Reid, S. A. (2004). Detection of Trypanosoma evansi in camels using PCR and CATT/T. evansi tests in Kenya. Veterinary Parasitology 124, 187199. doi: 10.1016/j.vetpar.2004.06.029.Google Scholar
OIE, W. O. f. A. H. (2012). OIE Terrestrial Manual 2012, Chapter 2.1.17. “Trypanosoma evansi Infections (Including Surra)”. http://www.oie.int/international-standard-setting/terrestrial-manual/access-online/.Google Scholar
Omoja, V. U., Anaga, A. O., Obidike, I. R., Ihedioha, T. E., Umeakuana, P. U., Mhomga, L. I., Asuzu, I. U. and Anika, S. M. (2011). The effects of combination of methanolic leaf extract of Azadirachta indica and diminazene diaceturate in the treatment of experimental Trypanosoma brucei brucei infection in rats. Asian Pacific Journal of Tropical Medicine 4, 337341. doi: 10.1016/S1995-7645(11)60099-0.Google Scholar
Pallavi, R., Roy, N., Nageshan, R. K., Talukdar, P., Pavithra, S. R., Reddy, R., Venketesh, S., Kumar, R., Gupta, A. K., Singh, R. K., Yadav, S. C. and Tatu, U. (2010). Heat shock protein 90 as a drug target against protozoan infections: biochemical characterization of HSP90 from Plasmodium falciparum and Trypanosoma evansi and evaluation of its inhibitor as a candidate drug. Journal of Biological Chemistry 285, 3796437975. doi: 10.1074/jbc.M110.155317.Google Scholar
Pearl, L. H. and Prodromou, C. (2006). Structure and mechanism of the Hsp90 molecular chaperone machinery. Annual Review of Biochemistry 75, 271294. doi: 10.1146/annurev.biochem.75.103004.142738.Google Scholar
Peregrine, A. S. and Mamman, M. (1993). Pharmacology of diminazene: a review. Acta Tropica 54, 185203. doi: 10.1016/0001-706X(93)90092-P.Google Scholar
Pizarro, J. C., Hills, T., Senisterra, G., Wernimont, A. K., Mackenzie, C., Norcross, N. R., Ferguson, M. A., Wyatt, P. G., Gilbert, I. H. and Hui, R. (2013). Exploring the Trypanosoma brucei Hsp83 potential as a target for structure guided drug design. PLOS Neglected Tropical Diseases 7, e2492. doi: 10.1371/journal.pntd.0002492.Google Scholar
Ranjithkumar, M., Saravanan, B. C., Yadav, S. C., Kumar, R., Singh, R. and Dey, S. (2013). Neurological trypanosomiasis in quinapyramine sulfate-treated horses – a breach of the blood-brain barrier? Tropical Animal Health and Production 46, 371377. doi: 10.1007/s11250-013-0498-9.Google Scholar
Rochani, A. K., Singh, M. and Tatu, U. (2013). Heat shock protein 90 inhibitors as broad spectrum anti-infectives. Current Pharmaceutical Design 19, 377386. doi: 10.2174/1381612811306030377.CrossRefGoogle ScholarPubMed
Samuni, Y., Ishii, H., Hyodo, F., Samuni, U., Krishna, M. C., Goldstein, S. and Mitchell, J. B. (2010). Reactive oxygen species mediate hepatotoxicity induced by the Hsp90 inhibitor geldanamycin and its analogs. Free Radical Biology and Medicine 48, 15591563. doi: 10.1016/j.freeradbiomed.2010.03.001.Google Scholar
Sharma, S. V., Agatsuma, T. and Nakano, H. (1998). Targeting of the protein chaperone, Hsp90, by the transformation suppressing agent, radicicol. Oncogene 16, 26392645. doi: 10.1038/sj.onc.1201790.Google Scholar
Siligardi, G., Hu, B., Panaretou, B., Piper, P. W., Pearl, L. H. and Prodromou, C. (2004). Co-chaperone regulation of conformational switching in the Hsp90 ATPase cycle. Journal of Biological Chemistry 279, 5198951998. doi: 10.1074/jbc.M410562200.Google Scholar
Singh, M., Shah, V. and Tatu, U. (2014). A novel C-terminal homologue of Aha1 co-chaperone binds to heat shock protein 90 and stimulates its ATPase activity in Entamoeba histolytica . Journal of Molecular Biology 426, 17861798. doi: 10.1016/j.jmb.2014.01.008.Google Scholar
Taipale, M., Jarosz, D. F. and Lindquist, S. (2010). Hsp90 at the hub of protein homeostasis: emerging mechanistic insights. Nature Reviews Molecular Cell Biology 11, 515528. doi: 10.1038/nrm2918.Google Scholar
Taldone, T., Sun, W. and Chiosis, G. (2009). Discovery and development of heat shock protein 90 inhibitors. Bioorganic and Medicinal Chemistry 17, 22252235. doi: 10.1016/j.bmc.2008.10.087.Google Scholar
Tuntasuvan, D., Jarabrum, W., Viseshakul, N., Mohkaew, K., Borisutsuwan, S., Theeraphan, A. and Kongkanjana, N. (2003). Chemotherapy of surra in horses and mules with diminazene aceturate. Veterinary Parasitology 110, 227233. doi: 10.1016/S0304-4017(02)00304-7.CrossRefGoogle ScholarPubMed
Ul Hasan, M., Muhammad, G., Gutierrez, C., Iqbal, Z., Shakoor, A. and Jabbar, A. (2006). Prevalence of Trypanosoma evansi infection in equines and camels in the Punjab region, Pakistan. Annals of the New York Academy of Sciences 1081, 322324. doi: 10.1196/annals.1373.043.CrossRefGoogle Scholar
Van der Ploeg, L. H., Giannini, S. H. and Cantor, C. R. (1985). Heat shock genes: regulatory role for differentiation in parasitic protozoa. Science 228, 14431446. doi: 10.1126/science.4012301.Google Scholar
Vigueira, P. A., Ray, S. S., Martin, B. A., Ligon, M. M. and Paul, K. S. (2012). Effects of the green tea catechin (-)-epigallocatechin gallate on Trypanosoma brucei . International Journal for Parasitology – Drugs and Drug Resistance 2, 225229. doi: 10.1016/j.ijpddr.2012.09.001.Google Scholar
Wang, M., Shen, G. and Blagg, B. S. (2006). Radanamycin, a macrocyclic chimera of radicicol and geldanamycin. Bioorganic and Medicinal Chemistry Letters 16, 24592462. doi: 10.1016/j.bmcl.2006.01.086.Google Scholar
Wells, E. A. (1984). Animal trypanosomiasis in South America. Preventive Veterinary Medicine 2, 3141. doi: 10.1016/0167-5877(84)90046-1.Google Scholar
Wiesgigl, M. and Clos, J. (2001). Heat shock protein 90 homeostasis controls stage differentiation in Leishmania donovani . Molecular Biology of the Cell 12, 33073316. doi: 10.1091/mbc.12.11.3307.Google Scholar
Yin, Z., Henry, E. C. and Gasiewicz, T. A. (2009). (-)-Epigallocatechin-3-gallate is a novel Hsp90 inhibitor. Biochemistry 48, 336345. doi: 10.1021/bi801637q.Google Scholar
Zweygarth, E. and Kaminsky, R. (1990). Evaluation of an arsenical compound (RM 110, mel Cy, Cymelarsan) against susceptible and drug-resistant Trypanosoma brucei brucei and T. b. evansi . Tropical Medicine and Parasitology 41, 208212.Google Scholar