Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T12:52:51.801Z Has data issue: false hasContentIssue false

Non linear schemes for the heat equation in 1D

Published online by Cambridge University Press:  18 December 2013

Get access

Abstract

Inspired by the growing use of non linear discretization techniques for the linear diffusion equation in industrial codes, we construct and analyze various explicit non linear finite volume schemes for the heat equation in dimension one. These schemes are inspired by the Le Potier’s trick [C. R. Acad. Sci. Paris, Ser. I 348 (2010) 691–695]. They preserve the maximum principle and admit a finite volume formulation. We provide a original functional setting for the analysis of convergence of such methods. In particular we show that the fourth discrete derivative is bounded in quadratic norm. Finally we construct, analyze and test a new explicit non linear maximum preserving scheme with third order convergence: it is optimal on numerical tests.

Type
Research Article
Copyright
© EDP Sciences, SMAI 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aavatsmark, I., Barkve, T., Boe, O., Mannseth, T., Discretization on unstructured grids for inhomogeneous, anisotropic media. Part I: Derivation of the methods. SIAM J. Sci. Comput. 19 (1998) 17001716. Google Scholar
Boyer, F., Hubert, F., Finite volume method for 2D linear and nonlinear elliptic problems with discontinuities. SIAM J. Numer. Anal. 46 (2008) 30323070. Google Scholar
Brezzi, F., Lipnikov, K., Shashkov, M., Simoncini, V., A new discretization methodology for diffusion problems on generalized polyhedral meshes. Comput. Meth. Appl. Mech. Eng. 196 (2007) 36823692. Google Scholar
C. Buet, B. Després and E. Franck, Design of asymptotic preserving finite volume schemes for the hyperbolic heat equation on unstructured meshes Numerische Mathematik, Online First (2012).
C. Cancès, M. Cathala, C. Le Potier, Monotone coercive cell-centered finite volume schemes for anisotropic diffusion equations, online Numer. Math. (2013).
G. Cohen, Higher-Order Numerical Methods for Transient Wave Equations. Springer-Verlag (2001)
B. Després, Convergence of non-linear finite volume schemes for linear transport. In Notes from the XIth Jacques-Louis Lions Hispano-French School on Numerical Simulation in Physics and Engineering. Grupo Anal. Teor. Numer. Modelos Cienc. Exp. Univ. Cadiz (2004) 219–239.
Després, B., Lax theorem and Finite Volume schemes. Math. Comput. 73 (2004) 12031234. Google Scholar
Droniou, J., Le Potier, C., Construction and convergence study of local-maximum-principle preserving schemes for elliptic equations. SIAM J. Numer. Anal. 49 (2011) 459490. Google Scholar
L.C. Evans, Partial Differential Equations. Rhode Island: American Mathematical Society, Providence (1988).
R. Eymard, T. Gallouët and R. Herbin, Finite Volume Methods, vol. 7 of Handbook of Numerical Analysis. Edited by P.G. Ciarlet and J.L. Lions. North Holland (2000) 713–1020.
Eymard, R., Gallouët, T. and Herbin, R., Discretisation of heterogeneous and anisotropic diffusion problems on general nonconforming meshes. SUSHI: a scheme using stabilization and hybrid interfaces, IMA J Numer Anal. 30 (2010) 10091043. Google Scholar
D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer, New York (1983).
Genty, A. and Le Potier, C., Maximum and minimum principles for radionuclide transport calculations in geological radioactive waste repository: comparison between a mixed hybrid finite element method and finite volume element discretizations. Transp. Porous Media 88 (2011) 6585. Google Scholar
E. Godlewski and P.-A. Raviart, Numerical approximation of hyperbolic systems of conservation laws, vol. 118 of Applied Mathematical Sciences. Springer (1996).
R. Herbin, F. Hubert, Benchmark on discretization schemes for anisotropic diffusion problems on general grids, in: 5th International Symposium on Finite Volumes for Complex Applications, edited by V.R. Eymard and J.M. Herard. Wiley (2008) 659–692.
F., Hermeline, A finite volume method for approximating 3D diffusion operators on general meshes. J. Comput. Phys. 228 (2009) 57635786. Google Scholar
D., Kershaw, Differencing of the diffusion equation in Lagrangian hydrodynamic codes. J. Comput. Phys. 39 (1981) 375395. Google Scholar
Le Potier, C., Correction non linéaire et principe du maximum pour la discrétisation d’opérateurs de diffusion avec des schémas volumes finis centrés sur les mailles. C. R. Acad. Sci. Paris, Ser. I 348 (2010) 691695. Google Scholar
C. Lepotier, private communication (2012).
R.J. Leveque, Numerical Methods for Conservation Laws, Lectures in Mathematics. ETH-Zurich Birkhauser-Verlag, Basel (1990).
Lipnikov, K., Shashkov, M., Yotov, I., Local flux mimetic finite difference methods. Numer. Math. 112 (2009) 115152. Google Scholar
Lipnikov, K. and Shashkov, M., A framework for developing a mimetic tensor artificial viscosity for Lagrangian hydrocodes on arbitrary polygonal meshes. J. Comput. Phys. 229 (2010) 79117941. Google Scholar
Lipnikov, K., Manzini, G. and Svyatskiy, D., Analysis of the monotonicity conditions in the mimetic finite difference method for elliptic problems. J. Comput. Phys. 230 (2011) 26202642. Google Scholar
Roe, P.L., Characteristic-based schemes for the Euler equations. Ann. Rev. Fluid Mech. 18 (1986) 337365. Google Scholar
Sheng, Z., Yue, J., Yuan, G., Monotone Finite volume schemes of non-equilibrium radiation diffusion equations of distorted meshes, SIAM J. Sci. Comput. 31 (2009) 29152934. Google Scholar
Yu.I. Shokin, The method of differential approximation, Springer-Verlag (1983).
Sweby, P., High-resolution schemes using flux limiters for hyperbolic conservation-laws. SIAM J. Numer. Anal. 21 (1984) 9951011. Google Scholar