Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-28T06:24:45.107Z Has data issue: false hasContentIssue false

Opal, cristobalite, and tridymite: Noncrystallinity versus crystallinity, nomenclature of the silica minerals and bibliography

Published online by Cambridge University Press:  10 January 2013

Deane K. Smith
Affiliation:
Emeritus Professor of Mineralogy, Department of Geosciences and Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802

Abstract

Cristobalite and tridymite are distinct forms of crystalline silica which, along with quartz, are encountered in industrial operations and industrial products. Because the International Agency for Research on Cancer has designated “crystalline silica” as an IARC Group 2A (probable carcinogen) and quartz and cristobalite as a Group 1 (carcinogen), it is important to properly identify and quantify the silica phase in all materials used in production and encountered in products. Opal is a form of hydrated silica which is also encountered in industry. Although some forms of opal mimic cristobalite and tridymite, they are not truly crystalline. The term “silica” in the industrial sense is used to mean any material whose composition is SiO2 whether it is crystalline or noncrystalline. Some people also consider silica to include hydrated SiO2. There are many forms of SiO2 which have both long-range and short-range order and are recognized as crystalline phases among which are quartz, cristobalite, and tridymite. The hydrated silicas, on the other hand, pose an enigma. Only a few forms show sufficient long-range and short-range order to be considered crystalline. The mineral silhydrite is an example. Opal in all its forms lacks sufficient order to be considered crystalline. Even opal-C, which produces a X-ray pattern similar to the diffraction pattern of cristobalite, lacks not only sufficient order to be considered crystalline but also contains water in the structural make-up. This paper discusses a classification and nomenclature for these forms which is critical to proper regulation. It also reviews the recent literature on tridymite, cristobalite, and opal, and provides an extensive bibliography. Modern studies have shown that opal-A is disordered, but opal-CT and opal-C contain ordered domains that mimic stacked sequences of cristobalite and tridymite sheets such that X-ray patterns show features similar to the crystalline cristobalite and tridymite. There is debate on whether the ordered regions have lost the water that characterizes the opals. In fact, heating studies have shown that all opals show changes on heating characteristic of materials that lose water in the process. The TEM evidence showing domains in the range 10–30 nm in a matrix of disordered opal suggest that the proper term for this system is paracrystalline analogous to inorganic and organic polymers.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barth, T. F. W. (1932). “The cristobalite structures: I High-cristobalite,” Am. J. Sci. 23,350356.CrossRefGoogle Scholar
Brindley, G. W. (1980). “Quantitative X-ray analysis of Clays,” in Crystal Structures of Clay Minerals and Their X-ray Identification, edited by G. W. Brindley and G. Brown (London, Mineralogical Society).Google Scholar
Cady, S. L., Wenk, H.-R., and Downing, K. H. (1996). “HTREM of microcrystalline opal in chert and porcelanite from the Monterey Formation, California,” Am. Miner. 81,13801395.CrossRefGoogle Scholar
Darraugh, P. J., Gaskin, A. J., Terrell, B. C., and Sanders, J. V. (1965). “Origin of precious opal,” Nature (London) 209,1316.CrossRefGoogle Scholar
De Jong, B. H. W. S., van Hoek, J., Veeman, W. S., and Manson, D. V. (1987). “X-ray diffraction and 29Si magic-angle spinning NMR of opals: Incoherent long- and short-range order in opal-CT,” Am. Miner. 72,11951203.Google Scholar
Dollase, W. A. (1965). “Reinvestigation of the structure of low cristobalite,” Z. Kristallogr. 21,369377.Google Scholar
Dwyer, F. P., and Mellor, D. P. (1934). “An X-ray study of opals,” J. Proc. R. Soc. N. S. W. 68, 47–50.CrossRefGoogle Scholar
Elton, N. J., Salt, P. D., and Adams, J. M. (1992). “The determination of low levels of quartz in commercial kaolins by X-ray diffraction,” Powder Diffr. 7,7176.CrossRefGoogle Scholar
Elzea, J. M., and Rice, S. B. (1996). “TEM and X-ray diffraction evidence for cristobalite and tridymite stacking sequences in opal,” Clays Clay Miner. 44,492500.CrossRefGoogle Scholar
Elzea, J. M., Odom, I. E., and Miles, W. J. (1994). “Distinguishing well ordered opal-CT and opal-C from high temperature cristobalite by X-ray diffraction,” Anal. Chim. Acta 286,107116.CrossRefGoogle Scholar
Flörke, O. W. (1955). “Zur frage des “Hoch-Cristobalit” in Opalen, Bentoniten and Glasern,” Neues Jahrb. Min. Mh. 217–233.Google Scholar
Flörke, O. W. (1967). “Die Modificationen von SiO 2,” Fortschr. Min 44, 181–230.Google Scholar
Flörke, O. W., Flörke, U., and Giese, U. (1984). “Moganite, a new microcrystalline silica mineral,” N. Jahrb. Min. Abh. 149, 325–336.Google Scholar
Flörke, O. W., Graetsch, H., and Jones, J. B. (1990). “Hydrothermal deposition of cristobalite,” Neues Jahrb. Min. Mh. 81–95.Google Scholar
Flörke, O. W., Jones, J. B., and Schmincke, H-U (1976). “A new microcrystalline silica from Gran Canaria,” Z. Krist. 143, 156-165.CrossRefGoogle Scholar
Flörke, O. W., Jones, J. B., and Segnit, E. R. (1973). “The genesis of hyaline,” Neues Jahrb. Min. Mh. 82–89.Google Scholar
Flörke, O. W., Jones, J. B., and Segnit, E. R. (1975). “Opal-CT crystals,” Neues Jahrb. Min. Mh. 369–377.Google Scholar
Flörke, O. W., Graetsch, H., Martin, B., Bochum, K., and Wirth, R. (1991). “Nomenclature of micro- and non-crystaline silica materials, based on structure and microstructure,” Neues Jahrb. Mineral. Monatasch. 163, 19–42.Google Scholar
Frondel, C. (1962). The System of Mineralogy, Vol. III The Silica Minerals, 7th ed. (Wiley, New York).Google Scholar
Garavelli, C. L. (1964). “Ordine e disordine negli opali,” Atti. Soc. Tosc. Sci. Nat. 71, 3–56.Google Scholar
Gibbs, R. E. (1926). “The polymorphism of silicon dioxide and the structure of tridymite,” Proc. R. Soc. London, Ser. A 113,351368.Google Scholar
Goswami, G. (1997). Personal Communication, Talmia Institute of Scientific and Induistrial Research, Orissa, India.Google Scholar
Graetsch, H. (1994). “Structural characteristics of opaline and microcrystalline silica minerals,” in Silica, physical behavior, geochemistry, and materials applications, edited by P. J. Heaney, C. T. Prewitt, and G. V. Gibbs, Reviews in Mineralogy. 29. Min Soc. Am. 209–232.Google Scholar
Graetsch, H., and Flörke, O. W. (1991). “X-ray powder diffraction patterns and phase relationships of tridymite modifications,” Z. Kristallogr. 195,3148.CrossRefGoogle Scholar
Graetsch, H., Flörke, O. W., and Miehe, G. (1985). “Wachstum, Struktur ind Gefuege von Opal-C bis-CT,” Z. Kristallogr. 170,5658.Google Scholar
Graetsch, H., Flörke, O. W., and Miehe, G. (1987). “Structural defects in microcrystalline silica,” Phys. Chem. Miner. 14,249257.CrossRefGoogle Scholar
Guthrie, G. D., Bish, D. L., and Reynolds, R. C. Jr.(1995). “Modeling the X-ray diffraction pattern of opal- CT,” Am. Miner. 80,869872.CrossRefGoogle Scholar
Heaney, P. J. (1994). “Structure and chemistry of the low pressure silica polymorphs in silica, physical behavior, geochemistry, and materials applications,” Reviews in Mineralogy, Volume 29, Mineralogical Society of America, Washington, DC, pp. 1–40.Google Scholar
Heaney, P. J., and Post, J. E. (1992). “The widespread distribution of a novel silica polymorph in microcrystalline quartz varieties,” Nature (London) 255,441443.Google ScholarPubMed
Hill, V. G., and Roy, R. (1958). “Silica structure studies. VI, On tridymite,” Trans. Brit. Cer. Soc. 57, 496–510.Google Scholar
IARC. (1987a). “Silica and some silicates,” Monogr. 42, International Agency for Research on Cancer. Lyon, France. 39–143.Google Scholar
IARC. (1987b). “Evaluation of the carcinogenic risks to silica and some silicates,” Monogr. 43. International Agency for Research on Cancer. Lyon, France.Google Scholar
IARC. (1997). “Silica, some silicates, coal dust, and para-aramid fibrils,” IARC Monographs on the Evaluation of Carcinogenic Risk to Humans, 68.Google Scholar
Jones, J. B., and Segnit, E. R. (1969). “Water in sphere type opal,” Miner. Mag. 37,357361.CrossRefGoogle Scholar
Jones, J. B., and Segnit, E. R. (1971). “The nature of opal, I. Nomenclature and constituent phases,” J. Geol. Soc. Australia 18, 57–68.CrossRefGoogle Scholar
Jones, J. B., and Segnit, E. R. (1972). “Genesis of cristobalite and tridymite at low temperatures,” J. Geol. Soc. Australia 18, 419–422.CrossRefGoogle Scholar
Jones, J. B., Sanders, J. V., and Segnit, E. R. (1964). “Structure of opal,” Nature (London) 204,990991.CrossRefGoogle Scholar
Kihara, K., Matsumoto, T., and Imamura, M. (1986a). “High-order thermal-motion tensor analysis of tridymite,” Z. Kristallogr. 172,3952.Google Scholar
Kihara, K., Matsumoto, T., and Imamura, M. (1986b). “Structural change of orthorhombic-I tridymite with temperature: A study based on second-order thermal-vibrational parameters,” Z. Kristallogr. 177,2738.CrossRefGoogle Scholar
Klein, C., and Hurlbut, C. S., Jr. (1993). Manual of Mineralogy, 21st ed. (Wiley, New York), 681pp.Google Scholar
Langer, K., and Flörke, O. W. (1974). “Near infrared absorption spectra (4000–9000 cm −1) of opals and the role of water in these SiO 2·nH 2O minerals,” Fortsch. Miner. 52, 17–51.Google Scholar
Levin, I., and Ott, E. (1933). “X-ray study of opals, silica glass and silica gel,” Z. Kristallogr. 85,305318.CrossRefGoogle Scholar
Mallard, E. (1890a). “Sur la Lussatite, nouvelle variete minerale cristallisee de silice,” Bull. Soc. Fr. Min. 13, 63–66.CrossRefGoogle Scholar
Mallard, E. (1890b). “Sur la tridymite et la cristobalite,”Bull. Soc. Franc. Miner. 13, 161–180.CrossRefGoogle Scholar
McClune, W. F. (1997). “The Powder Diffraction File,” International Centre for Diffraction Data, Newtown Square, PA.Google Scholar
Miles, W. J. (1994). “Crystalline silica analysis of Wyoming bentonite by X-ray diffraction after phosphoric acid digestion,” Anal. Chim. Acta 286,97105.CrossRefGoogle Scholar
Miles, W. J., and Hamilton, R. D. (1991). “Detection and Measurement of Crystalline Silica in Minerals,” in Environmental Management for the 1990’s, edited by D. J. Lootens (SME, Littleton, CO), pp. 329–333.Google Scholar
Monroe, E. A., Sass, D. B., and Cole, S. H. (1969). “Stacking faults and polytypism in opal, SiO 2·nH 2O,Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 25,578580.CrossRefGoogle Scholar
Nagase, T., and Akizuki, M. (1997). “Texture and structure of opal-CT and opal-C in volcanic rocks.” Can. Miner. 35, 947–958.Google Scholar
Nukui, A., and Nakazawa, H. (1980). “Polymorphism in tridymite,” J. Miner. Soc. Jpn. 14 (spec. Vol. 2), 364–386 (in Japanese).Google Scholar
Von Nieuwenkamp, W. (1935). “Die Kristallstruktur des tief-Cristobalits SiO 2,Z. Kristallogr. 92,8288.CrossRefGoogle Scholar
Peacor, D. R. (1973). “High-temperature single crystal study of the cristobalite inversion,” Z. Kristallogr. 138,274298.CrossRefGoogle Scholar
Pevear, D. R., Dethier, D. P., and Frank, D. (1982). “Clay minerals in the 1980 deposits from Mount St. Helens,” Clays Clay Miner. 30,241252.CrossRefGoogle Scholar
Pluth, J. J., Smith, J. V., and Faber, J. Jr.(1985). “Crystal structure of low cristobalite at 10, 293 and 473 K: Variation of the framework geometry with temperature,” J. Appl. Phys. 57,10451049.CrossRefGoogle Scholar
Rice, S. B., and Elzea, J. M. (1993). “Stacking disorder in the crystaline opals,” Clay Min. Soc. Abstracts with Program 137.Google Scholar
Sanders, J. V.(1975). “Microstructure and crystallinity of gem opals,” Am. Miner. 60,749757.Google Scholar
Sangster, A. G., and Hodson, M. J. (1986). “Silica in higher plants,” in Silicon Biochemistry, edited by D. Evered and M. O’Connor (Wiley, Chichester, UK), pp. 90–111.Google Scholar
Segnit, E. R., Anderson, C. A., and Jones, J. B. (1970). “A scanning microscope study of the morphology of opal,” Search. 1, 349–351.Google Scholar
Smelik, E. S., and Reeber, R. R. (1990). “A study of the thermal behavior of terrestrial tridymite by continuous X-ray diffraction,” Phys. Chem. Miner. 17,197206.CrossRefGoogle Scholar
Smith, D. K., Tomiano, G. P., and Wright, A. C. (1998). “On the paracrystallinity of opal,” Proceedings of the XVII Conference on Applied Crystallography, Wisla, Poland, edited by H. Morawiec, and D. Stróz, Polish Academy of Sciences.Google Scholar
Van Valkenburg, A. Jr., and Buie, B. F.J. V.(1945). “Octahedral cristobalite with quartz paramorphs from Ellora Caves, Hyderabad State, India,” Am. Miner. 30,526535.Google Scholar
Wyckoff, R. W. G. (1925). “The crystal structure of the high temperature form of cristobalite (SiO 2),Am. J. Sci. 9,448459.CrossRefGoogle Scholar
Ampian, S. G., and Vitra, R. L. (1992). Crystalline silica overview: Occurrence and analysis. Information Circular, IC-9317. U.S. Bur. Mines. Washington, DC, 27pp.Google Scholar
Arbey, F. (1979). “Les formes de la silice et l’identification des evaporites dans les formations silicifiees,” Bull. Cent. Rech. Explor. Prod. Elf Aquitaine. 4, 309–365.Google Scholar
Belonoshko, A. B., Dubrovinsky, L. S., and Dubrovinsky, N. A. Jr.(1996). “A new high-pressure silica phase obtained by molecular dynamics,” Am. Miner. 81,785788.Google Scholar
Bustillo, M. A., Fort, R., and Bustillo, M. (1993). “Specific surface area and ultramicroporosity in polymorphs of silica,” Eur. J. Mineral. 5,11951204.CrossRefGoogle Scholar
Calvert, S. E. (1983). “Sedimentary geochemistry of silicon,” in Silicon geochemistry and biogeochemistry, edited by Aston (Academic, London).Google Scholar
Drees, L. R., Wilding, L. P., Smeck, N. E., and Senkayli, A. L. (1989). “Silica in soils: Quartz and disordered silica polymorphs,” in Minerals in soil environments, edited by J. P. Dixon (Soil Sci. Soc. Am. Madison, WI), pp. 913–975.Google Scholar
Elzea, J. M., Sprague, E. K., and Odom, I. E. (1991). “Characterization of low temperature silica polymorphs in calcium bentonites, sodium bentonites, and Fuller's earths by XRD, SEM/EDS and TEM,” (Abstr.) Clay Min. Soc. Abstracts with Program. 28, 43.Google Scholar
Fenner, C. N. (1913). “The stability relations of the silica minerals,” Am. J. Sci. 36,331384.CrossRefGoogle Scholar
Flörke, O. W. (1959). “Regelungserscheinungen bei der paramorphen Unwandlung von SiO 2-Kristallen,” Z. Kristallogr. 112,126135.CrossRefGoogle Scholar
Flörke, O. W., and Schneider, H. (1986). “Intergrowth relationships between the SiO 2-polymorphs quartz, cristobalite and tridymite in SiO 2-rich ceramic materials,” Ber. Dtsch. Keram. Ges. 63,368372.Google Scholar
Flörke, O. W., and Martin, B. (1993). “Silica modifications and products,” in Ullmann's Encyclopedia of Industrial Chemistry. Vol. A23, 583–598, 654–655 (VCH, New York).Google Scholar
Flörke, O. W., Martin, B., Benda, L., Paschen, S., Bergna, H. E., Roberts, W. I., Welsh, W. A., Ettlinger, M., Kerner, D., Kleinschmit, P., Meyer, J., Gies, H., and Schiffmann, D. (1993). Silica. Ullmann's Encyclopedia of Industrial Chemistry, VA23 (VCH, New York).Google Scholar
Garrison, R. E., Douglass, R. B., Pisciotto, K. E., Issacs, C. M., and Ingle, J. C. (Eds.) (1981). The Monterey Formation and related siliceous rocks of California, Soc. Econ. Paleontol. Min., Pacific Section, Los Angeles, 68, 307–323.Google Scholar
Gibbs, G. V., Downs, J. W., and Boissen, M. B., Jr. (1994). The Elusive Si-O Bond in Silica, Physical Behavior, Geochemistry, and Materials Applications, edited by P. J. Heaney, C. T. Prewitt, and G. V. Gibbs (Mineralogical Society of America, Washington, DC), pp. 369–402.Google Scholar
Harville, D., and Britton, A. (1994). “Identification and quantification of silica phases in the Monterey Formation using infrared spectroscopy,” A. A. A. P. Bull. 78, 664–665.Google Scholar
Heaney, P. J., and Banfield, J. A. (1995). “Structure and chemistry of silica, metal oxides and phosphates,” Health Effects of Mineral Dusts, edited by G. O. Guthrie and B. T. Mossman, Rev. Miner. 28, 185–233.Google Scholar
Heaney, P. J., Prewitt, C. T., and Gibbs, G. V. (Eds.) (1994). Silica, Physical Behavior, Geochemistry, and Materials Applications. Reviews in Mineralogy, Volume 29 (Mineralogical Society of America, Washington, DC), 606pp.Google Scholar
Iler, R. K. (1979). The Chemistry of Silica (Wiley, New York), pp. 21–28.Google Scholar
Odom, I. E., and Elzea, J. M. (1991). “Environmental aspects of silica minerals in clays and sediments,” Clay Miner. Soc. Abstr. with Program 28, 123.Google Scholar
Rey, T. (1966). “Ultrarotabsorption von AlPO 4 und SiO 2 in Abhangigkeit von Fehlordering und Temperatur,” Z. Kristallogr. 123,263314.CrossRefGoogle Scholar
Smith, J. V., and Blackwell, C. S. (1984a). “Nuclear magnetic resonance of silica polymorphs,” Nature (London) 303,223225.CrossRefGoogle Scholar
Smith, J. V., and Steele, I. M. (1984b). “Chemical substitution in silica polymorphs,” Neues. Jahrb. Min. Mon. 3, 137–144.Google Scholar
Sosman, R. B. (1965). The Phases of Silica (Rutgers University Press, New Brunswick, NJ).Google Scholar
Wahl, F. M., Grim, R. E., and Graf, R. B.(1961). “Phase transformations in silica as examined by continuous X-ray diffraction,” Am. Miner. 44,196208.Google Scholar
Wilding, L. P., Smeck, N. E., and Drees, L. R. (1977). “Silica in soils: quartz, cristobalite, tridymite and opal,” In Minerals in soil environments, edited by J. B. Dixon, S. B. Weed, J. A. Kittrick, M. H. Milford, and J. L. White (Soil Science Society of America, Madison, WI), pp. 471–552.Google Scholar
Barth, T. F. W. (1932). “The cristobalite structures: II Low-cristobalite,” Am. J. Sci. 24,97110.CrossRefGoogle Scholar
Cruickshank-Banks, D. W., and Stevens, L. (1983). “The formation of cristobalite from diatomite—A dilatometric study,” Aust. Dental J. 28, 27–29.Google Scholar
Downs, R. A., and Palmer, D. C.(1994). “The pressure behaviour of α-cristobalite,” Am. Miner. 79, 9–14.Google Scholar
Eitel, W. (1957). “Structural anomalies in tridymite and cristobalite,” Am. Ceram. Soc. Bull. 57,142148.Google Scholar
Endell, J. (1948). “Rontgenographischer Nachweis Zwischenzustande be der Bildund Von Cristobaliteaus Klieselguhr beim Erhitzen, [X-ray Analysis Confirming the Existence of Intermediate Phases During Calcination of Diatomaceous-Earth],” J. Kolloidzachr. 11, 19–22.Google Scholar
Etchepare, J., Merian, M., and Kaplan, P. (1978). “Virational normal modes of SiO2. II Cristobalite and tridymite,” J. Chem. Phys. 68,15311537.CrossRefGoogle Scholar
Flörke, O. W. (1955a). “Strukturanomalien bei Tridymit und Cristobalit,” Ber. Dtsch. Keram. Ges. 32,369381.Google Scholar
Flörke, O. W. (1955b). “Zur Frage des “High”-Cristobalit in Opalen, Bentoniten und Glaesern,” Neues Jahrb. Mineral. Monatasch. 10, 217–224.Google Scholar
Flörke, O. W. (1956). “Uber die Hoch-Tief Umwandlung und die thermische Ausdehnung von Cristobalit,” Ber. Dtsch. Keram. Ges. 33,319321.Google Scholar
Flörke, O. W. (1957). “Uber die Roentgen-Mineralanalyse und die thermische Ausdehnung von Cristobalit und Tridymit und uber die Zusammensetzung von Silikamassen,” Ber. Dtsch. Keram. Ges. 34,343353.Google Scholar
Flynn, P. T., Jr., Rosol, A. T., and Kinsala, S. D. (1991). “Cristobalite formation in diatomaceous earth—effects of time and temperature,” in Environmental Management for the 1990’s, edited by D. J. Lootens, W. M. Greenslade, and J. M. Barker (SME, Littleton, CO), pp. 367–371.Google Scholar
Hatch, D. M., and Ghose, S. (1991). “The α-β phase transition in cristobalite, SiO 2,Phys. Chem. Miner. 17,554562.CrossRefGoogle Scholar
Hua, G. L., Welberry, T. R., Withers, R. L., and Thompson, J. G. (1983). “An electron diffraction and lattice-dynamical study of the diffuse scattering in β-cristobalite.J. Appl. Crystallogr. 21,458465.CrossRefGoogle Scholar
Lally, J. S., Nord, G. L., Jr., Heuer, A, H., and Christie, J. M. (1978). “Transformation-induced defects in α-cristobalite,” Proc. 9th Int’l Congress on Electron Microscopy, Electron Microscopy 1, 476–477.Google Scholar
Laves, F. (1939). “Uber den Einfluß von Spannungen auf die Regelung von Quarz- und Cristobalit Kristallchen in Chalzedon, Quartzin, und Lussatit,” Naturwissenschaften 42,705717.CrossRefGoogle Scholar
Leadbetter, A. J., and Wright, A. F. (1976). “The α-β transition in the cristobalite phases of SiO 2 and AlPO 4 I. X-ray studies,” Philos. Mag. 33,105112.CrossRefGoogle Scholar
Leadbetter, A. J., Smith, T. W., and Wright, A. F. (1973). “Structure of high cristobalite,” Nature (London), Phys. Sci. 244,125126.CrossRefGoogle Scholar
Lukesh, J.(1967). “Stability, lattice parameters and thermal expansion of α-cristobalite: A discussion,” Am. Miner. 52,541541.Google Scholar
Mason, B.(1972). “Lunar tridymite and cristobalite,” Am. Miner. 57,15301535.Google Scholar
Moehlman, R. S.(1935). “Quartz paramorphs after tridymite and cristobalite,” Am. Miner. 20,808810.Google Scholar
Murata, K. I., and Nakata, K. (1974). “Cristobalitic stage in the diagenesis of diatomaceous shale,” Science 184,567568.CrossRefGoogle ScholarPubMed
Von Nieuwenkamp, W. (1935). “Die Kristallstruktur des tief-Cristobalits SiO 2,Z. Kristallogr. 92,8288.CrossRefGoogle Scholar
Von Nieuwenkamp, W. (1937). “Uber die Struktur von hoch-Cristobalit,” Z. Kristallogr. 96,454458.CrossRefGoogle Scholar
O’Keeffe, M., and Hyde, B. G. (1976). “Cristobalite and topologically-related structures,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 32,29232936.CrossRefGoogle Scholar
Palmer, D. C., Hemley, R. J., and Prewitt, C. T.(1994). “Raman spectroscopic study of high-pressure phase transitions in cristobalite,” Phys. Chem. Miner. 21,481488.CrossRefGoogle Scholar
Parise, J. B., Yeganeh-Haeri, A., Weidner, D. J., Jorgensen, J. D., and Saltzberg, M. A. (1994). “Pressure-induced phase transition and pressure dependence of crystal structure in low (α) cristobalite and Ca/Al-doped cristobalite,” J. Appl. Phys. 75,13611367.CrossRefGoogle Scholar
Perotta, N. J., Grubbs, D. K., Martin, N. R., McKinstry, H. A., and Huang, C. Y. (1989). “Chemical stabilization of α-cristobalite,” J. Am. Chem. Soc. 61,441447.Google Scholar
Pevear, D. R., Williams, V. E., and Mustoe, G. E. (1980). “Kaolinite, smectite, and K-rectorite in bentonites: relation to coal rank at Tulameen, British Columbia,” Clays Clay Miner. 28,241254.CrossRefGoogle Scholar
Phadke, A. V., and Kshirsagar, L. K. (1986). “Thermo-analysis of low cristobalite from Pune, Maharashtra, India: Paragenetic significance,” Z. Geol. Wiss. 14, 559–567.Google Scholar
Phillips, B. L., Thompson, J. G., Ziao, Y., and Kirkpatrick, R. J. (1993). “Constraints on the structure and dynamics of the α-cristobalite polymorphs of SiO 2 and AlPO 4 from 31P, 27Al and 29Si NMR spectroscopy to 770K,” Phys. Chem. Miner. 20,341352.CrossRefGoogle Scholar
Richet, P., Bottinga, Y., Denielou, L., Petitet, J. P., and Tequi, C. (1982). “Thermodynamic properties of quartz, cristobalite and amorphous SiO 2: Drop calorimetry measurements between 1000 and 1800 K and a review from 0 to 2000 K,” Geochim. Cosmochim. Acta 48,26392658.CrossRefGoogle Scholar
Schmahl, W. W. (1993). “Athermal transformation behavior and thermal hysteresis at the SiO 2-α/β-cristobalite phase transition,” Eur. J. Mineral. 5,377380.CrossRefGoogle Scholar
Schmahl, W. W., Swainson, I. P., Dove, M. T., and Graeme-Barber, A. (1992). “Landau free energy and order parameter behaviour of the α/β phase transition in cristobalite,” Z. Kristallogr. 201,125145.CrossRefGoogle Scholar
Schneider, H. (1986a). “Chemical composition of tridymite and cristobalite from volcanic and meteoritic rocks,” Neues Jahrb. Min. Mon. 10, 433–444.Google Scholar
Schneider, H. (1986b). “Chemical composition of tridymite and cristobalite from volcanic and meteoritic tocks,” Neues Jahrb. Mineral. Montasch. 433–444.Google Scholar
Schneider, H. and Majdic, A. (1984). “Iron incorporation in tridymite and cristobalite,” Neues Jahrb. Mineral. Monatsch. 559–568.Google Scholar
Siefert-Kraus, U. and Schneider, H. (1984). “Cation distribution between cristobalite, tridymite, and coexisting glass phases in used silica bricks,” Ceram. Int. 10, 135–142.Google Scholar
Spearing, D. R., Farnan, I., and Stebbins, J. F. (1992). “Dynamics of the α-β phase transitions in quartz and cristobalite as observed by in situ high-temperature 29Si and 17O NMR,” Phys. Chem. Miner. 19,307321.CrossRefGoogle Scholar
Swainson, I. P., and Dove, M. T. (1993). “Low-frequency floppy modes in α-cristobalite,” Phys. Rev. Lett. 71,193196.CrossRefGoogle Scholar
Thompson, A. B., and Wennemer, M. (1979). “Heat capacities and inversions in tridymite, cristobalite and tridymite-cristobalite mixed phases,” Am. Miner. 64,10181026.Google Scholar
Walker, R. F., Zerfoss, S., Holley, S. F., and Gross, L. J. (1958). “Temperature of the inversion in cristobalite,” J. Res. Natl. Bur. Stand. 61,251261.CrossRefGoogle Scholar
Welberry, T. R., Hua, G. L., and Withers, R. L. (1989). “An optical transform and Monte Carlo study of the disorder in β-cristobalite,” J. Appl. Crystallogr. 22,8795.CrossRefGoogle Scholar
Wilson, M. J., Russell, J. D., and Tate, J. M. (1974). “A new interpretation of the structure of disordered α-cristobalite,” Contr. Miner. Pet. 47, 1–6.CrossRefGoogle Scholar
Withers, R. I., Thompson, J. G., and Welberry, T. R. (1989). “The structure and microstructure of α-cristobalite and its relationship to β-cristobalite,” Phys. Chem. Miner. 16,517523.CrossRefGoogle Scholar
Wolfe, C. W.(1944). “Crystallography of Cristobalite from Ellora Caves, India,” Am. Miner. 29,536537.Google Scholar
Wright, A. F., and Leadbetter, A. J. (1975). “The structures of the β-cristobalite phases of SiO 2 and AlPO 4,Philos. Mag. 31,13911401.CrossRefGoogle Scholar
Zhang, X., and Org, C. K. (1993). “Pressure-induced amorphization of β-cristobalite,” Phys. Rev. B 48,68656870.CrossRefGoogle ScholarPubMed
Adams, S. I., Hawkes, G. E., and Curzon, E. H. (1991). “A solid state 29Si nuclear magnetic resonance study of opal and other hydrous silicas,” Am. Miner. 76,18631871.Google Scholar
Bartoli, F., Bittencourt-Rosa, D., Doirisse, M., Meyer, R., Philippy, R., and Samana, J. C. (1990). “The role of aluminum in the structure of Brazilian opals,” Eur. J. Mineral. 2,611619.CrossRefGoogle Scholar
Blank, R. R., and Fosberg, M. A. (1991). “Duripans of Idaho: In situ alteration of eolian dust (loess) to an opal-A/X-ray amorphous phase,” Geoderma. 48, 131–149.CrossRefGoogle Scholar
Boudreau, B. P. (1990). “Modelling early diagenesis of silica in non-mixed sediments,” Deep-Sea Research, Part A: Oceanographic Research Papers 37, 1543–1567.CrossRefGoogle Scholar
Breese, R. O. Y. (1994). Diatomite in Industrial Minerals and Rocks, 6th ed., edited by D. D. Casr (DME, Littleton, CO), pp. 397–412.Google Scholar
Brunier, T. M. (1990). “Neutron scattering studies of amorphous materials,” Ph.D. Thesis, Univ. Reading, Whiteknights, Reading, UK.Google Scholar
Cady, S. L. (1994). “Microfibrous quartz and crystalline opaline silica varieties: Microstructural characterization by transmission electron microscopy and quantitative X-ray texture analysis,” Ph.D. Thesis, Univ. California, Berkeley, CA, 147pp.Google Scholar
Cady, S. L., and Wenk, H.-R. (1994). “Diagenetic microcrystalline opal varieties from the Monterey Formation, CA: HTREM study of the structures and phase transformation mechanisms,” (Abstr.) Geol. Soc. Am. Abstracts with Programs 26, A112.Google Scholar
Chester, R., and Elderfield, H. (1968). “The infrared determination of opal in siliceous deep-sea sediments,” Geochim. Cosmochim. Acta 32,11281140.CrossRefGoogle Scholar
Curtil, L., and Murat, M. (1992). “Conditions de formation et microstructure des gels formes par dissolituon non congruente de l’opale dans les solutions basiques,” Compte Rendus des l;’Academie des Sciences, Serie 2, Mechanique, Physique, Chimie, Sciences de l’Univers, Sciences de la Terre. 315, 55–58.Google Scholar
Deelman, J. C. (1986). “Opal-CT in bamboo,” Neues Jahrb. Min. Mon. 9, 407–415.Google Scholar
Flörke, O. W., Flux, S., and Schroder, B. (1985). “Hyalith vim Steihwitzhugel bei Kulmain W’tiel des Egergrabens,” Neues. Jahrb. Min. Abh. 151, 87–97.Google Scholar
Flörke, O. W., Hollmann, R., Rad, U. V., and Rosch, H. (1976). “Intergrowth and twinning in Opal-CT lepispheres,” Contr. Miner. Pet. 58, 235–242.CrossRefGoogle Scholar
Froelich, F. (1989). “Deep-sea boigenic silica: New structural and analytical data from infrared analysis—geological implications,” Terra Nova, 1, 267–273.CrossRefGoogle Scholar
Gauthier, J. P. (1986). “Observation directe par microscopic electronique a transmission de diverse varieties d’opale: II Opal-synthetique,” J. Microsc. Spectrosc Elektron 11, 37–52.Google Scholar
Gauthier, J. P., and Bittencourt-Rosa, D. (1991). “Crystal-like organization in precious opal,” (Abstr) Sixth meeting of the European Union of Geosciences. Terra Abstracts 3, 404.Google Scholar
Goldberg, E. D. (1958). “Determination of opal in marine sediments,” J. Mar. Res. 17,178182.Google Scholar
Graetsch, H., and Ibel, K. (1997). “Small angle neutron scattering by opals,” Phys. Chem. Miner., 23 (in press).Google Scholar
Graetsch, H., and Topalovic-Dierdorf, T. (1996b). “MAS NMR spectra of hyalite from Gran Canaria,” Chemie Erde, 56, 387–391.Google Scholar
Graetsch, H., Flörke, O. W., and Ibel, K. (1991). “Neutronenkleinwinkelstreunung von Opalen und Chalzedon,” (abst.) Z. Kristallogr. 3,86.Google Scholar
Graetsch, H., Flörke, O. W., and Miehe, G. (1985). “The nature of water in chalcedonly and opal-C from Brazilian agate geodes,” Phys. Chem. Miner. 12,300306.CrossRefGoogle Scholar
Graetsch, H., Gies, H., and Topalovic, I. (1994). “NMR, XRD, and IR study on microcrystalline opals,” Phys. Chem. Miner. 21,166175.CrossRefGoogle Scholar
Graetsch, H., Mosset, A., and Gies, H. (1990). “XRD and 29Si MAS-NMR study on some non-crystalline silica minerals,” J. Non-Cryst. Solids 119,173180.CrossRefGoogle Scholar
Greer, R. T. (1969). “Submicron structure of “amorphous” opal,” Nature (London) 224,11991200.CrossRefGoogle Scholar
Guba, I. (1993). “Die aussergewoehnlichen Eigenschaften von Kascholong Opal aus einem neuentdeckten Vorkommen im Oman,” Deut. Gemmol. Ges. 42, 141–148.Google Scholar
Guthrie, G. D., Bish, D. L., Chipera, S. J., and Raymond, R. (1995). “Distribution of potentially hazardous phases in the subsurface at Yucca Mountain, Nevada,” Los Alamos Scientific Laboratory, Los Alamos, NM. Rept. No: LA-12573-MS. 41pp.Google Scholar
Ibel, K., and Wright, A. (1980). “An opal standard for very low momentum transfers in neutron small angle scattering,” ILL Internal Scientific Report 80IB45S.Google Scholar
Jones, J. B., Biddle, J., and Segnit, E. R. (1966). “Opal genesis,” Nature (London) 210,13531354.CrossRefGoogle Scholar
Jones, R. L. (1969). “Determination of opal in soil by alkali dissolution analysis,” Soil Sci. Soc. Am. Proc. 33, 976–978.Google Scholar
Kato, K. (1983). “Ordering of opal-CT in diagenesis,” Geochem. J. 17, 87–93.Google Scholar
Khimicheva, N. V., Plyusnina, I. I., and Isirikyan, A. A. (1991a). “Adsorptive properties of the opal-quartz mineral series,” Moscow Univ. Geol. Bull. 46, 28–37 (in Russian).Google Scholar
Khimicheva, N. V., Plyusnina, I. I., and Isirikyan, A. A. (1991b). “Sorption properties of the minerals of the opal to quartz range,” Vestn. Mosk. Univ. Seriya 4 Geologiya Moscow, 33–44 (in Russian).Google Scholar
Kinnunen, K. A., and Ikonen, L. (1991). “Opal, a new hydromorphic precipitate type from gravel deposits in southern Finland,” Bull. Geol. Soc. Finland 63, 95–104.CrossRefGoogle Scholar
Leinen, M. (1977). “A normative calculation technique for determining opal in deep-sea sediments,” Geochim. Cosmochim. Acta 41,671676.CrossRefGoogle Scholar
Leinen, M. (1985). “Techniques for determining opal in deep-sea sediments: A comparison of radiolarian counts and X-ray diffraction data,” Marine Micropaleontology 9, 375–383.CrossRefGoogle Scholar
Li, D., Bancroft, G. M., Kasrai, M., Fleet, M. E., Secco, R. A., Feng, X. H., Tan, K. H., and Yang, B. X.(1994). “X-ray absorption spectroscopy of silicon dioxide (SiO 2) polymorphs: The structural characterization of opal,” Am. Miner. 79,622632.Google Scholar
Mayerson, D. A., Dunkel, C. A., Piper, K. A., and Cousminer, H. L. (1995). “Identification and correlation of the Opal-CT/quartz phase transition in offshore Central California,” A. A. A. G. Bull. 79, 592.Google Scholar
Mitchell, R. S., and Tufts, S.(1973). “Wood opal—A tridymite-like mineral,” Am. Miner. 58,717720.Google Scholar
Mizota, C., Itoh, M., Kusakabe, M., and Noto, M. (1991). “Oxygen isotope ratios of opaline silica and plant opal in three recent volcanic ash soils,” Geoderma 50, 211–217.CrossRefGoogle Scholar
Mueller, P. J., and Schneider, R. (1993). “An automated leaching method for the determination of opal in sediments and particulate matter,” Deep-Sea Research. Part I: Oceanographic Research Papers 40, 425–444.Google Scholar
Mueller, P. J., and Schneider, R. (1990). “Eine automatisierte Methode zur nasschemischen Bestimmung von Opal in Sinkstoffen und Sedimenten,” Nach. Deut. Geol. Ges. 43, 144.Google Scholar
Patalakha, Ye. I., Smirnov, A. V., and Korobkin, V. V. (1991). “Dehydration in opal as a result of disharmonious folding of siliceous strata,” Sovetskaya Geologiya. 1991, 93–95.Google Scholar
Pusey, P. N., van Megen, W., Bartlett, P., Ackerson, B. J., Rarity, J. G., and Underwood, S. M. (1989). “Structure of crystals of hard colloid spheres,” Phys. Rev. Lett. 63,27532756.CrossRefGoogle Scholar
Radan, S., Seghudi, I., and Bunescu, C. (1992). “Opal lepispheres in hydrothermal alteration deposits from East Carpathians Neogene alteration zone,” Roumanian J. Min. 75, Supp. 1, 38.Google Scholar
Rice, S. B., Fruend, H., Huang, W. L., Clouse, J. A., and Issacs, C. M. (1995). “Application of Fourier transform infrared spectroscopy to silica diagenesis: The opal-A to opal-CT transformation,” J. Sed. Res. A 65, 639–647.Google Scholar
Ruland, W. (1971). “Small-angle scattering of two-phase systems: Determination and significance of systematic deviations from Porod's law,” J. Appl. Crystallogr. 4,7073.CrossRefGoogle Scholar
Sanders, J. V. (1964). “Colour of precious opal,” Nature (London) 204,11511153.CrossRefGoogle Scholar
Sanders, J. V. (1968). “Diffraction of light by opals,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 24,427434.CrossRefGoogle Scholar
Tada, R., and Iijima, A. (1983). “Identification of mixtures of opalime silica phases and its implication for silica diagenesis,” In Siliceous Deposits in the Pacific Region, edited by A. Iijima, J. R. Hein, and R. Siever, (University of Tokyo Geological Institute, Tokyo, Japan), pp. 229–245.Google Scholar
Taijing, L., Zhang, X., Sunagawa, I., and Groves, G. W. (1995). “Nanometre scale textures in agate and Beltane opal,” Miner. Mag. 59,103109.Google Scholar
Taliaferro, N. L. (1935). “Some properties of opal,” Am. J. Sci. 30,450474.CrossRefGoogle Scholar
Taylor, E. M., and Huckins, H. E. (1995). “Lithology, fault displacement, and origin of secondary calcium carbonate and opaline silica at trenches 14 and 14D on the Bow Ridge fault at Exile Hill, Nye County, Nevada,” Open File Report, U.S. Goel. Surv. Rept. No.: OF 93-0477.Google Scholar
Vaniman, D. T., Ebinger, M. H., Bish, D. L., and Chipera, S. J. (1992). “Precipitation of calcite, dolomite, sepiolite and silica from evaporated carbonate and tuffaceous waters of southern Nevada, USA,” in Proc. 7th Int’l Symp, Water-Rock Interactions. Vol. 1. Low Temperature Environments, edited by Y. K. Kharaka, and A. S. Maest, U.S. Geol. Surv. Menlo Park, CA, pp. 687–691.Google Scholar
Ashworth, J. R. (1988). “Transformation mechanisms of tridymite to cristobalite studied by transmission electron microscopy,” Phys. Chem. Miner. 15,246251.CrossRefGoogle Scholar
Ashworth, J. R. (1989). “Transmission electron microscopy of co-existing tridymite polymorphs,” Miner. Mag. 53,8997.CrossRefGoogle Scholar
Baur, W. H. (1977). “Silicon-oxygen bond lengths, bridging angles Si-O-Si and synthetic low tridymite,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 33,26152619.CrossRefGoogle Scholar
Blankenberg, H. J., Schoen, W., and Roesler, H. J. (1980). “Die Spurenelemente im Tridymit des Siderophyrs von Rittersgruen/Ertgebirge,” Chemie Erde 39, 98–90.Google Scholar
Buerger, M. J., and Lukesh, J. (1942). “The tridymite problem,” Science 95,2021.Google Scholar
Carpenter, M., and Wennemer, M.(1985). “Characterization of synthetic tridymites by transmission electron microscopy,” Am. Miner. 70,517528.Google Scholar
Cohen, L. H., and Klemment, W. K., Jr. (1980). “Tridymite: Effect of hydrostatic pressure to 6 kbar on temperatures of two rapidly reversible transitions,” Contrib. Miner. Pet. 71, 401–405.CrossRefGoogle Scholar
De Dombal, R. F., and Carpenter, M. A. (1993). “High-temperature phase transitions in Steinbach tridymite,” Eur. J. Mineral. 5,607622.CrossRefGoogle Scholar
Dollase, W. A. (1967). “The crystal structure at 220 °C of orthorhombic high tridymite from the Steinbach meteorite,” Acta Crystallogr. 23,617623.CrossRefGoogle Scholar
Dollase, W. A., and Baur, W. H.(1976). “The superstructure of meteoric low tridymite solved by computer simulation,” Am. Miner. 61,971978.Google Scholar
Flörke, O. W. (1966). “Wachstum ind Verzwillingung von Tridymit,” Kristall und Technik, 1, 405–410.CrossRefGoogle Scholar
Flörke, O. W., and Langer, K. (1972). “Hydrothermal recrystallization and transformation of tridymite,” Contr. Miner. Petrog. 36, 221–230.Google Scholar
Flörke, O. W., and Muller-vonmoos, M. (1971). “Displazive Tief-Hoch-Umwandlung von Tridymit,” Z. Kristallogr. 133,193302.CrossRefGoogle Scholar
Flörke, O. W., and Nukui, A. (1988). “Strukturell Pathologie von Tridymiten,” Neues Jahr. Miner. Abb. 158, 175–182.Google Scholar
Friedlaender, C. G. J. (1970a). “Tridymite in the gangue of a Pb-Cu-Zn-occurrence,” Schseit. Mineral. Petrogr. Mitt. 50, 183–199.Google Scholar
Friedlaender, C. G. J. (1970b). “Entaxy of tridymite in the gangue of a Pb-Cu-Zn-occurrence,” Can. Mineral. 10, 704–709.Google Scholar
Goetz, W. (1962). “Intersuchungen am Tridymit des Siderophyrs von Grimuna in Sachsen,” Chemie Erde 22, 167–174.Google Scholar
Graetsch, H., and Flörke, O. W. (1991). “X-ray powder diffraction patterns and phase relationships of tridymite modifications,” Z. Kristallogr. 195,3148.CrossRefGoogle Scholar
Graetsch, H., and Topalovic-Dierdorf, T. (1996). “29Si MAS NMR spectrum and superstructure of modulated tridymite L3-To(MX-1),” Eur. J. Mineral. 8,103113.CrossRefGoogle Scholar
Gratten-Bellew, P. E. (1978). “Quartz-tridymite transition under hydrothermal conditions,” Expl. Mineral. 11, 129–139.Google Scholar
Hill, V. G., and Roy, R. (1958). “Silica structure studies. VI, On tridymite,” Trans. Brit. Cer. Soc. 57, 496–510.Google Scholar
Hoffmann, W. And Laves, F. (1964). “Zur Polytypie und Polytropie von Tridymit,” Naturwill. 51, 335.Google Scholar
Hoffmann, W., Kockmeyer, M., Lons, J., and Vach, C. (1983). “The transformation of monoclinic low-tridymite MC to a phase with an incommensurate superstructure,” Fortschr. Miner. 61, 96–98.Google Scholar
Imamura, M., and Matsumoto, T. (1980). “Change of X-ray diffraction pattern of tridymite by heating and cooling,” J. Mineral. Soc. Jpn. 14, 387–396 (in Japanese).Google Scholar
Kato, K., and Nukui, A. (1976). “Die Kristalstruktur des monoklinen Tief-Tridymits,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 32,24862491.CrossRefGoogle Scholar
Kawai, K., Matsumoto, T., Kihara, K., and Sakurai, K. (1978). “The first finding of monoclinic tridymite in terrestrial volcanic rocks,” Miner. J. (Japan) 9, 231–235.Google Scholar
Kihara, K. (1977). “An orthorhombic superstructure of tridymite existing between about 105 and 180 °C,” Z. Kristallogr. 146,185203.CrossRefGoogle Scholar
Kihara, K. (1978). “Thermal change in unit-cell dimensions, and a hexagonal structure of tridymite,” Z. Kristallogr. 148,237253.CrossRefGoogle Scholar
Kihara, K. (1980). “On the split-atom model for hexagonal tridymite,” Z. Kristallogr. 152,95101.CrossRefGoogle Scholar
Kihara, K. (1981). “Adenda and corrigendum for “On the split-atom model for hexagonal tridymite,” 157, 93.Google Scholar
Kim, Y. J., Xiao, Y., and Kirkpatrick, R. J. (1992). “TEM investigations of tridymite polymorphs,” (Abstr.) Trans. Am. Geophys. Union EOS 73, 620.Google Scholar
Konnert, J. H., and Appleman, D. E. (1978). “The crystal structure of low tridymite,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 34,391403.CrossRefGoogle Scholar
Loens, J., and Hoffmann, W. (1987). “Zur Krustallstruktur der inkommensurablen Raumtemperaturphase des Tridymit,” Z. Kristallogr. 178,141143.Google Scholar
Nukui, A., and Flörke, O. W.(1987). “Three tridymite structural modifications and cristobalite intergrown in one crystal,” Am. Miner. 72,167169.Google Scholar
Nukui, A., Nakazawa, H., and Akao, M.(1978). “Thermal changes in monoclinic tridymite,” Am. Miner. 63,12521259.Google Scholar
Nukui, A., Yamamoto, A., and Nakazawa, H. (1979). “Non-integral phase in tridymite,” in Modulated Structures-1979, edited by J. M. Cowley, J. B. Cohen, M. B. Salamon, and B. J. Wuensch, Am. Inst. Phys. Conf. Proc. 53, 327–329.Google Scholar
Nukui, A., Yamaoka, S., and Nakazawa, H.(1980). “Pressure-induced phase transitions in tridymite,” Am. Miner. 65,12831286.Google Scholar
Ray, L. L. (1947). “Quartz paramorphs after tridymite from Colorado,” Am. Miner. 32,643646.Google Scholar
Sato, M. (1963a). “X-ray study of tridymite (1): On tridymite M and tridymite S,” Miner. J. (Japan) 4, 115–130.CrossRefGoogle Scholar
Sato, M. (1963b). “X-ray study of tridymite (2): Structure of low tridymite,” Miner. J. (Japan) 4, 131–146.CrossRefGoogle Scholar
Sato, M. (1964). “X-ray study of tridymite (3): Unit cell dimensions and phase transition of tridymite,” Type S. Miner. J. (Japan) 4, 215–225.CrossRefGoogle Scholar
Schneider, H., and Floerke, O. W. (1982). “Microstructure, chemical composition, and structural state of tridymite,” Neues Jahrb. Min. Mon. 145, 280–290.Google Scholar
Schneider, H., and Floerke, O. W. (1986). “High-temperature transformation of tridymite single-crystals to cristobalite,” Z. Kristallogr. 175,165176.Google Scholar
Shadid, K. A., and Glasser, F. P. (1970). “Thermal properties of tridymite: 25 °C–300 °C,” J. Therm. Anal. 2,181190.CrossRefGoogle Scholar
Tagai, T., and Sadanaga, R. (1972). “Tridymite features of its high-low transitions and structure of its 20-layer polytype,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 28,s121.Google Scholar
Tagai, T., Sadanaga, R., Takeuchi, Y., and Takeda, H. (1977). “Twinning of tridymite from the Steinbach meteorite,” Miner. J. (Japan) 8, 382–398.Google Scholar
Wennemer, M., and Thompson, A. B. (1984a). “Tridymite polymorphs and polytypes,” Schweiz Min. Petrogr. Mitt. 64, 335–353.Google Scholar
Wennemer, M., and Thompson, A. B. (1984b). “Ambient temperature phase transitions in synthetic tridymites,” Schweiz Min. Petrogr. Mitt. 64, 355–368.Google Scholar
Withers, R. L., Thompson, J. G., Xiao, Y., andKirkpatrick, R. J.(1994). “An Electron Diffraction Study of the Polymorphs of SiO 2-Tridymite,” Phys. Chem. Miner. 21,421433.CrossRefGoogle Scholar
Xiao, Y., Kirkpatrick, R. J., and Kim, Y. J. (1993). “Structural phase transitions of tridymite: A 29Si MAS NMR investigation,” Am. Miner. 78,241244.Google Scholar
Hamilton, R. D., and Peletis, N. G. (1990). “The determination of quartz in perlite by X-ray diffraction,” Adv. X-Ray Anal. 23,493497.Google Scholar
Heaney, P. J., and Post, J. E. (1992). “The widespread distribution of a novel silica polymorph in microcrystalline quartz varieties,” Nature (London) 255,441443.Google ScholarPubMed
Hurst, V. J., Schroeder, P. A., and Styron, R. W. (1997). “Accurate quantification of quartz and other phases by powder X-ray diffractometry,” Anal. Chim. Acta 337,233252.CrossRefGoogle Scholar
Kingma, K. J., and Hemley, R. J. (1994). “Raman spectroscopic study of microcrystalline silica,” Am. Miner. 79,269273.Google Scholar
Mallard, E. (1890). “Sur la Lussatite, nouvelle variete minerale cristallisee de silice,” Bull. Soc. Fr. Miner. 13, 63–66.Google Scholar
Midgley, H. G. (1951). “Chalcedony and flint,” Geol. Mag. 88, 179–184.Google Scholar
Miehe, G., Graetsch, H., and Florke, O. W. (1984). “Crystal structure and growth fabric of length-fast chalcedony,” Phys. Chem. Miner. 10,197199.CrossRefGoogle Scholar
Renault, J., McKee, C., and Barker, J. (1991). “Quantitative X-ray Diffraction Analysis of Trace Quartz in Selected Mineral Products: Standardization II,” in Environmental Management in the 1990’s, edited by D. J. Lootens (SME, Littleton, CO), pp. 361–362.Google Scholar
Renault, J., McKee, C., and Barker, J. (1992). “Calibrating for X-ray analysis of trace quartz,” Adv. X-Ray Anal. 35,363373.Google Scholar
Seifert, H. (1966). Epitaxy of Macromolecules on Quartz Surfaces (Pergamon, New York).Google Scholar
Breese, R. O. Y., and Barker, J. M., “Perlite” in Industrial Minerals and Rocks, Sixth Ed., edited by D. D. Casr (DME, Littleton, CO), pp. 735–749.Google Scholar
Bridgeman, P. W. (1953). “Effects of high pressure on glass,” Am. J. Sci. 237,718.Google Scholar
Devine, R. A. (Ed.) (1988). The Physics and Technology of Amorphous SiO 2 (Plenum, New York).CrossRefGoogle Scholar
Fanderlik, I. (Ed.) (1991). Silica Glass and its Applications (Elsevier, Amsterdam) 304pp.Google Scholar
Flörke, O. W. (1959). “Uber Kieselsaeurekristalle in Glaesern,” Glastechnische Berichte, 32, 1–10.Google Scholar
Galeener, F. L., and Wright, A. C. (1986). “The J. C. Phillips model for vitreous SiO 2: A critical appraisal,” Solid State Commun. 57,677682.CrossRefGoogle Scholar
Grimley, D. I., Wright, A. C., and Sinclair, R. N. (1990). “Neutron scattering from vitreous silica,” J. Non-Cryst. Solids 119,4964.CrossRefGoogle Scholar
Hosemann, R., Hentschel, M. P., Schmeisser, U., and Bruckner, R. (1986). “Structural model of vitreous silica based on microcrystalline principles,” J. Non-Cryst. Solids 83,223234.CrossRefGoogle Scholar
Kubicki, J. D., and Lasaga, A. C. (1988). “Molecular dynamics simulations of SiO 2 melt and glass: Ionic and covalent models,” Am. Miner. 73,941955.Google Scholar
O’Keefe, J. A. (1984). “Natural glass,” J. Non-Cryst. Solids 67,117.CrossRefGoogle Scholar
Pye, L. D., O’Keefe, J. A., and Frechette, V. D. (1984). Natural Glasses (North-Holland, Amsterdam), 662pp.Google Scholar
Sykes, D., and Kubicki, J. D. (1996). “Four-membered rings in silica and aluminosilicate glasses,” Am. Miner. 81,26652672.CrossRefGoogle Scholar
Wright, A. C. (1994). “Neutron scattering from vitreous silica. V. The structure of vitreous silica: What have we learned from 60 years of diffraction studies?,” J. Non-Cryst. Solids 179,84115.CrossRefGoogle Scholar
Wright, A. C., Desa, J. A. E., Weeks, R. A., Sinclair, R. N., and Bailey, D. K. (1984). “Neutron diffraction studies of natural glasses,” J. Non-Cryst. Solids 67,3544.CrossRefGoogle Scholar
Wright, A. C., Bachra, B., Brunier, T. M., Sinclair, R. N., Gladden, L. F., and Portsmouth, R. L. (1992). “A neutron diffraction and MAS-NMR study of the structure of fast neutron irradiated vitreous silica,” J. Non-Cryst. Solids 150,6975.CrossRefGoogle Scholar
Altree-Williams, S., Byrnes, J. G., and Jordan, B. (1981). “Amorphous surface and quantitative X-ray powder diffractometry,” Analyst (Cambridge, U.K.) 106,6975.CrossRefGoogle Scholar
Bailey, D. A. (1947). “Conversion of silica on ignition,” J. Ind. Hyg. Toxic. 29, 242–249.Google Scholar
Bettermann, P., and Liebau, F. (1975). “The transformation of amorphous silica to crystalline silica under hydrothermal conditions,” Contrib. Min. Petrol. 53, 25–36.CrossRefGoogle Scholar
Calacal, E. L., and Whittemore, O. J. (1987). “The scintering of diatomaite,” Am. Ceram. Soc. Bull. 66,790793.Google Scholar
Carr, R. M., and Fyfe, W. S. (1958). “Some observations on the crystallization of amorphous silica,” Am. Miner. 43,908916.Google Scholar
Correns, C. W., and Nagelschmidt, G. (1933). “Uber Faserbau und Optische Eigenshaften von Chalzedon,” Z. Kristallogr. 85,199213.CrossRefGoogle Scholar
Crerar, D. A., Axtmann, E. V., and Axtmann, R. C. (1981). “Growth and ripening of silica polymers in aqueous solutions,” Geochim. Cosmochim. Acta 45, 1259–1266.CrossRefGoogle Scholar
Graetsch, H., Floerke, O. W., and Miehe, G. (1987). “Structural defects in microcrystalline silica,” Phys. Chem. Miner. 14,249257.CrossRefGoogle Scholar
Heaney, P. J. (1993). “A proposed mechanism for the growth of chalcedony,” Contr. Min. Pet. 115, 66–74.CrossRefGoogle Scholar
Jordan, B., O’Connor, B. H., and Deyu, L. (1990). “Use of Rietveld pattern fitting to determine the weight fraction of crystalline material in natural low quartz specimens,” Powder Diffr. 5,6469.CrossRefGoogle Scholar
Mozzi, R. L., and Warren, B. E. (1969). “The structure of vitreous silica,” J. Appl. Crystallogr. 2,164172.CrossRefGoogle Scholar
Nakamura, T., Sameshina, K., Okunaga, K. et al. (1989). “Determine of amorphous phase in quartz powder by X-ray powder diffraction,” Powder Diffr. 4,913.CrossRefGoogle Scholar
Rimstedt, J. D., and Barnes, H. L. (1980). “The kinetics of silica-water reactions,” Geochim. Cosmochim. Acta 44,16831699.CrossRefGoogle Scholar
Stebbins, J. F., (1991). “NMR evidence for five-coordinated silicon in a silicate glass at atmospheric pressure,” Nature (London) 351,638639.CrossRefGoogle Scholar
Williams, L. A., and Crerar, D. A. (1985). “Silica diagenesis, II: General mechanisms,” J. Sed. Petrol. 55, 312–321.Google Scholar
Williams, L. S., Parks, G. A., Crerar, D. A. (1985). “Silica diagenesis, I: Solubility controls,” J. Sed. Petrol. 55, 301–311.Google Scholar
Bartoli, F. (1985). “Crystallochemistry and surface properties of biogenic opal,” J. Soil Sci. 36, 335–350.CrossRefGoogle Scholar
Bartoli, F., and Wilding, L. P. (1980). “Dissolution of biogenic opal as a function of its physical and chemical properties,” Soil Sci. Soc. Am. J. 44,873878.CrossRefGoogle Scholar
Bendz, G., and Lindquist, I. (Eds.) (1977). Biochemistry of Silicon and Related Problems (Plenum, New York), 591pp.Google Scholar
Brewster, N. A. (1981). “The determination of biogenic opal in high latitude deep sea sediments,” (Abstr.) International conference on siliceous deposits in the Pacific region. Univ. Tokyo Tokyo, Jpn. 38.Google Scholar
Evered, D., and O’Connor, M. (Eds.) (1986). Silicon Biochemistry (Wiley, Chichester, UK), 264pp.Google Scholar
Gies, J. W. (1972). “Biogenic opaline silica in selected plant materials,” (Abstr.) Agronomy Abstracts, Madison, WI, p. 155.Google Scholar
Guthrie, G. D. J., and Heaney, P. J. (1995). “Mineralogical characteristics of the silica polymorphs in relation to their biological activity,” In Proc. 2nd Int’l Symp. Silica, Silicosis, and Cancer, edited by D. F. Goldsmith, G. R. Wagner, U. Saffioti, J. Rabovsky, and J. Leigh.Google Scholar
Hartwig, G., and Hench, L. L. (1972). “The epitaxy of poly-L-alanine on L-quartz and a glass-ceramic,” J. Biomed. Mater. Res. 6, 413–424.CrossRefGoogle Scholar
Kaufman, P. B., Dayanandan, P., Takeoka, Y., Bigelow, W. C., Jones, J. D., and Iler, R. (1981). “Silica in shoots of higher plants,” in Silicon and Siliceous Structures in Biological Systems, edited by T. I. Simpson and B. E. Volcani (Springer-Verlag, New York), p. 409–449.Google Scholar
Koopmann, B. (1980). “Quantitative determination of silt sized biogenic silica in Atlantic deep-sea sediments,” (Abstr.) International Association of Sedimentologists, first European regional meeting. 30–33.Google Scholar
Kozin, F., Millstein, B., Mandel, G., and Mandel, N. (1982). “Silica induced membranolysis: A study of different structural forms of crystalline and amorphous silica and the effects of protein adsorption,” J. Colloid Interface Sci. 88,326337.CrossRefGoogle Scholar
Langer, A. M. (1978). “Crystal faces and cleavage planes in quartz as templates in biological processes,” Q. Rev. Biophys. 11,543575.CrossRefGoogle ScholarPubMed
Manein, D., Geiger, B., and Addadi, L. (1994). “Differential adhesion of cells to enantiomorphous crystal surfaces,” Science 263,14131416.Google Scholar
Mann, S., and Perry, C. C. (1986). “Structural aspects of biogenic silica,” in Silicon Biochemistry, edited by D. Evered, and M. O’Connor (Wiley, Chichester, UK), pp. 40–58.Google Scholar
Mortlock, R. A., and Froelich, P. N. (1989). “A simple method for the rapid determination of biogenic opal in pelagic marine sediments,” Deep-Sea Research. Part A: Oceanographic Research Papers. 36, 1415–1426.Google Scholar
Nash, T., Allison, A. C., and Harington, J. S. (1966). “Physico-chemical properties of silica in relation to toxicity,” Nature (London) 210,259261.CrossRefGoogle ScholarPubMed
Pease, D. S., and Anderson, J. U. (1969). “Opal phytoliths in bouteloua eriopoda torr.-roots and soils,” Soil Sci. Soc. Am. Proc. 33, 321–322.Google Scholar
Weiss, A., and Herzog, A. (1977). “Isolation and characterization of a silicon-organic complex from plants,” in Biochemistry of Silicon and Related Problems, edited by G. Bendz and I. Lindquist (Plenum, New York).Google Scholar
Wilding, J. P., and Drees, L. R. (1974). “Contributions of forest opal and associated crystalline phases to fine silt and clay fractions of soils,” Clays Clay Miner. 22,295306.CrossRefGoogle Scholar
Abrams, H. K. (1954). “Diatomaceous earth pneumoconiosis,” Am. J. Pub. Health. 44, 592–599.Google Scholar
Bagchi, N. (1992). “What makes silica toxic?” Brit. J. Indus. Med. 49, 163–166.Google Scholar
Brieger, M., and Gross, P. (1966). “On the theory of silicosis: I Coesite,” Arch. Environ. Health 13, 751–757.Google Scholar
Brieger, M., and Gross, P. (1967). “On the theory of silicosis: III Stishovite,” Arch. Environ. Health 15, 751–757.Google Scholar
Caldwell, D. M. (1958). “The coalescent lesion of diatomaceous earth pnumoconiosis,” Am. Rev. Tuberculosis. 77, 644–661.Google Scholar
Checkoway, H., Heyer, N. J., Demers, P. A., and Breslow, N. E. (1992). “A cohort mortality study of workers in the diatomaceous earth industry,” Unpublished final report from the Univ. Of Washington. School of Public Health and Community Medicine, Seattle, WA. Submitted to the International Diatomite Producers Assn. 133pp.Google Scholar
Craighead, J. E. (Chair) (1988). “Silicosis and silicate disease committee NOISH: Diseases associated with exposure to silica and nonfibrous silicate minerals,” Arch. Path. Lab. Med. 112, 673–720.Google Scholar
Craighead, J. E. (1992). “Do silica and asbestos cause lung cancer?” Arch. Pathol. Lab. Med. 116, 16–20.Google Scholar
Dunnom, D. D. (Ed.) (1981). “Health effects of synthetic silica particulates,” Am. Soc. Test. Mat. Philadelphia, PA. 226pp.Google Scholar
Ebbesen, P. (1991). “Fibrosis and tumour development in dust innoculated mice,” Eur. J. Cancer. Prev. 1, 39–41.CrossRefGoogle Scholar
Fubini, B., Bolis, V., and Giamello, E. (1987). “The surface chemistry of crushed quartz dust in relation to its pathogenicity,” Inorg. Chim. Acta 138,193197.CrossRefGoogle Scholar
Glenn, R. E. (1992). “Health effects of crystalline silica,” in 10th “Industrial Minerals” Int’l Congr., edited by J. B. Griffiths, Industrial Minerals Division of Metal Bulletin plc, May 1992, Surrey, UK, 112–119.Google Scholar
Goldsmith, D. F. (1994). “Silica exposure and pulmonary cancer,” in Epidemiology of Lung Cancer, edited by J. M. Samet (Dekker, New York), pp. 245–298.Google Scholar
Goldsmith, D. F., Winn, D. M., and Shy, C. M. (Eds.) (1986). Silica, Silicosis, and Cancer (Praeger, New York), 536pp.Google Scholar
Guthrie, G. D. Jr.(1992). “Biological effects of inhaled minerals,” Am. Miner. 77,225243.Google Scholar
Guthrie, G. D., Jr. (1995). “Mineralogical factors affect the biological activity of crystalline silica,” App. Occup. Environ. Hyg. 10, 1126–1131.CrossRefGoogle Scholar
Guthrie, G. D. J., Jr., and Heaney, P. J. (1995). “Mineralogical characteristics of silica polymorphs in relation to their biological activities,” Scanda. J. Work, Environ. Health 21, 5–8.Google Scholar
Guthrie, G. D., Jr. and Mossman, B. T. (Eds.) (1993). Health Effects of Mineral Dusts. Reviews in Mineralogy, Volume 28, Mineralogical Society of America, Washington, DC, 584pp.CrossRefGoogle Scholar
Hemenway, D. R., Absher, M., Landesman, M., Trombley, L., and Emerson, R. J. (1986). “Differential lung response following silicon dioxide polymorph aerosol exposure,” in Silica, Silicosis and Cancer, edited by D. F. Goldsmith, D. M. Winn, and C. M. Shy (Praeger, New York), pp. 105–116.Google Scholar
King, E. J., Mohanty, G. P., Harrison, C. V., et al. (1953). “The action of different forms of pure silica on the lungs of rats,” Br. J. Ind. Med. 19, 9–17.Google Scholar
Reiser, K. M., and Last, J. A. (1979). “Silicosis and fibrogenesis: Fact and artifact,” Toxicology 13, 51–72.CrossRefGoogle Scholar
Rosner, D., and Markowitz, G. (1991). Deadly Dust, Silicosis, and the Politics of Occupational Disease in Twentieth Century America (Princeton University Press. Princeton, NJ), 229pp.Google Scholar
Ruhl, R., Schmucker, M., and Floerke, O. W. (1990). “Silikose druch nichtkristalline Kieselsaeure?,” Arbietsmed. Sozialmed Praventivmed 25, 8–15.Google Scholar
Saffioti, U. (1986). “The pathology induced by silica in relation to fibrogenesis and carcinogenesis,” in Silica, Silicosis, and Cancer edited by D. F. Goldsmith, D. M. Winn, and C. M. Shy (Praeger, New York), pp. 287–307.Google Scholar
Sax, N. I., and Lewis, R. J. (Eds.) (1988). Dangerous Properties of Industrial Materials, 7th ed., Vol. III (Van Nostrand Reinhold, New York) pp 3020–3023.Google Scholar
Selikoff, I. J. (1978). “Carcinogenic potential of silica compounds,” in Biochemistry of Silicon and Related Problems, edited by G. Benz and I. Lindquist (Eds.) (Plenum, New York).Google Scholar
Shi, X., Dalal, N. S., Hu, S. N. et al. (1989). “The chemical properties of silica particle surface in relation to silica-cell interactions,” J. Toxicol. Environ. Health 27,435454.CrossRefGoogle ScholarPubMed
Vigliani, E. C., and Motlura, G. (1948). “Diatomaceous earth silicosis,” Br. J. Indus. Med. 5, 148–350.Google Scholar
Ball, R. A. (1977). “Natural or synthetic opal?” Aust. Gemmol. 13, 104–105.Google Scholar
Ball, R. A. (1978). “Identification of synthetic opal,” Aust. Gemmol. 13, 131–133.Google Scholar
Tombs, G. A. (1975). “Notes on identification of Gilson synthetic opals,” Aust. Gemmol. 12, 179–180.RegulatoryGoogle Scholar
ACGIH (1984). Threshold limit values for chemical substances in the work environment adopted by the ACGIH conference for 1984-1985. Amer. Conf. Gov’t and Indust. Hygenists. Cincinnati, OH.Google Scholar
Branch of Industrial Minerals (1992). Crystalline Silica Primer. U.S. Bur. Mines Special Publ. 49p.CrossRefGoogle Scholar
IARC (1987). IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans: Overall Evaluations of Carcinogenecity: An Updating of IARC Monographs 1-42, Supplement 7, World Health Organization, International Agency for Research on Cancer, Lyon, France, 440pp.Google Scholar
NIOSH (1974). Criteria for a Recommended Standard—Occupational exposure to crystalline silica. Department of Health, Education and Welfare, National Institutes for Occupational Safety and Health, Cinncinati OH.Google Scholar
Miles, W. J. (1990). “Mining industry responds to crystalline silica regulations,” Miner. Eng. 42, 345–348.Google Scholar
Miles, W. J., and Harben, P. W. (1991). “US crystalline silica regulations—Approaching the detection limits,” Ind. Miner. 291, 21–22,25,27.Google Scholar
Vu, V. T. (1995). “Regulatory approaches to reduce human health risks associated with exposures to mineral fibers,” Rev. Miner. 28, 545–554.Google Scholar