Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-28T14:32:08.356Z Has data issue: false hasContentIssue false

Interface states in ZnO varistor with Mn, Co, and Cu impurities

Published online by Cambridge University Press:  03 March 2011

Yoshihiko Yano*
Affiliation:
R&D Center, TDK Corporation, 2–15–7 Higashioowada, Ichikawa-shi, Chiba 272, Japan
Yoshizo Takai
Affiliation:
R&D Center, TDK Corporation, 2–15–7 Higashioowada, Ichikawa-shi, Chiba 272, Japan
Hisao Morooka
Affiliation:
R&D Center, TDK Corporation, 2–15–7 Higashioowada, Ichikawa-shi, Chiba 272, Japan
*
a)Address correspondence to this author.
Get access

Abstract

The interface states in ZnO with impurities of transition-metals, Mn, Co, and Cu, were investigated by the DLTS (deep-level transient spectroscopy) measurements in ZnO/PrCoOx/ZnO junctions as model systems of ZnO ceramic varistors and by the SCF-Xα-SW molecular orbital calculations using simplified cluster models. The DLTS signals, correlated to the doping of Mn and Co, are obtained with ZnO/PrCox/ZnO junctions. The signals correspond to the interface states due to the transition-metal doping. Xα calculations indicate that the interface states attributed to the doping of transition-metals, Mn, Co, and Cu, in ZnO are created between the valence band and the conduction band, which consist of transition-metals 3d character. The impurities of transition-metals affect interface states as well as the adsorbed excess oxygen.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

Present address: Department of Applied Physics, Osaka University, Suita, Osaka 565, Japan.

References

REFERENCES

1Matuoka, M., Jpn. J. Appl. Phys. 10, 736 (1971).CrossRefGoogle Scholar
2Mukae, K., Tuda, K., and Nagasawa, I., Jpn. J. Appl. Phys. 16, 1361 (1977).CrossRefGoogle Scholar
3Levinson, L. H. and Philipp, H. R., J. Appl. Phys. 46, 1332 (1975).CrossRefGoogle Scholar
4Emtage, P. E., J. Appl. Phys. 48, 4372 (1977).Google Scholar
5Einzinger, R., Appl. Surf. Sci. 3, 340 (1979).CrossRefGoogle Scholar
6Mahan, G. D., Levinson, L. M., and Philipp, H. R., J. Appl. Phys. 50, 2799 (1979).CrossRefGoogle Scholar
7Pike, G. E., Kurtz, S. R., Grourley, P. L., Philipp, H. R., and Levinson, L. M., J. Appl. Phys. 57, 5512 (1985).Google Scholar
8Greuter, F., Blatter, G., Rossinelli, M., and Stucki, F., Advances in Varistor Technology, edited by Levinson, L. M. (American Ceramics Society, Westerville, OH, 1988), p. 31.Google Scholar
9Pike, G. E., Grain Boundaries in Semiconductors, edited by Pike, G. E., Seager, C. H., and Leamy, H. J. (Elsevier, Amsterdam, 1982), p. 369.Google Scholar
10Blatter, G. and Greuter, F., Phys. Rev. B 33, 3952 (1986).CrossRefGoogle Scholar
11Blatter, G. and Greuter, F., Phys. Rev. B 34, 8555 (1986).CrossRefGoogle Scholar
12Seager, C. H., Pike, G. E., and Ginley, D. S., Phys. Rev. Lett. 43, 532 (1979).CrossRefGoogle Scholar
13Gambino, J. P., Kingery, W. D., Pike, G. E., Philipp, H. R., and Levinson, L. M., J. Appl. Phys. 61, 2571 (1987).Google Scholar
14Greuter, F., Blatter, G., Rossinelli, M., and Schmuckle, F., Mater. Sci. Forum 10–12, 235 (1986).Google Scholar
15Tuda, K. and Mukae, K., IECEJ Tech. Rep. CPM86–2, 27 (1986).Google Scholar
16Maeda, T., Meguro, S., and Takata, M., Jpn. J. Appl. Phys. 28, L714 (1989).CrossRefGoogle Scholar
17Yano, Y., Shirakawa, Y., and Morooka, H., Jpn. J. Appl. Phys. 31, L1429 (1992).CrossRefGoogle Scholar
18Maeda, T. and Takata, M., Seramikkusu Ronbunshi 97, 1225 (1989).CrossRefGoogle Scholar
19Stucki, F. and Greuter, F., Appl. Phys. Lett. 57, 446 (1990).Google Scholar
20Seager, C. H., Ann. Rev. Mater. Sci. 15, 271 (1985).Google Scholar
21Lou, L. I., J. Appl. Phys. 50, 555 (1979).CrossRefGoogle Scholar
22Suzuoki, Y., Ohki, A., Mizutani, T., and Ieda, M., J. Phys. D 20, 511 (1987).Google Scholar
23Yano, Y., Shirakawa, Y., and Morooka, H., J. Ceram. Soc. Jpn. 100, 547 (1992).CrossRefGoogle Scholar
24Yano, Y., Shirakawa, Y., and Morooka, H., unpublished research.Google Scholar
25Sukkar, M. H., Tuller, H. L., and Johnson, K. H., Grain Boundaries in Semiconductors, edited by Pike, G. E., Seager, C. H., and Leamy, H. J. (Elsevier, Amsterdam, 1982), p. 141.Google Scholar
26Sukkar, M. H., Johnson, K. H., and Tuller, H. L., Mater. Sci. Eng. B 6, 49 (1990).CrossRefGoogle Scholar
27Slater, J. C. and Johnson, K. H., Phys. Rev. B 5, 844 (1972).CrossRefGoogle Scholar
28Slater, J. C., The Calculation of Molecular Orbitals (John Wiley & Sons, Inc., New York, 1979).Google Scholar
29Kolb, D. M., in Zinc Oxide, Vol. 7 of Current Topics in Materials Science, edited by Kaldis, E. (North-Holland, Amsterdam, 1981), p. 227.Google Scholar
30Tossel, J. A., Chem. Phys. 15, 303 (1965).Google Scholar
31Bonasewicz, P., Littbarski, R., and Grunze, M., in Zinc Oxide, Vol. 7 of Current Topics in Materials Science, edited by Kaldis, E. (North-Holland, Amsterdam, 1981), p. 371.Google Scholar
32Yano, Y. and Morooka, H., unpublished research.Google Scholar