Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T10:48:56.229Z Has data issue: false hasContentIssue false

Highly mobile oxygen hole-type charge carriers in fused silica

Published online by Cambridge University Press:  31 January 2011

Friedemann Freund
Affiliation:
Department of Physics, San Jose State University, San Jose, California 95192
Michael M. Masuda
Affiliation:
Department of Physics, San Jose State University, San Jose, California 95192
Minoru M. Freund
Affiliation:
Department of Physics, San Jose State University, San Jose, California 95192
Get access

Abstract

Some peculiar positive charge carriers are thermally generated in fused silica above 500 °C. These charge carriers appear to be positive holes, chemically O states, probably arising from dissociation of peroxy defects. The charge carriers give rise to a pronounced positive surface charge which disappears upon cooling but can be quenched by rapid quenching from ≍800 °C. Reheating to ≍200 °C remobilizes these charge carriers and causes them to anneal below 400 °C. The generation of positive holes charge carriers may be important to understand failure mechanisms of SiO2 insulators.

Type
Materials Communications
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kaminow, I. P., Bagley, B. G., and Olson, C. G., Appl. Phys. Lett. 32, 98 (1978).CrossRefGoogle Scholar
2. Griscom, D. L., in Glass Sci. Technol., 4, 151251 (1990).CrossRefGoogle Scholar
3. Bethkenhagen, V. and Huebner, K., Phys. Status Solidi B 136, 721734 (1986).CrossRefGoogle Scholar
4. Griscom, D. L., Phys. Rev. B 40, 42244227 (1989).CrossRefGoogle Scholar
5. Griscom, D. L., Brinker, C. J., and Ashley, C.S., J. Non-Cryst. Solids 92, 295301 (1987).CrossRefGoogle Scholar
6. Hughes, R. C., Phys. Rev. B 15, 20122020 (1977).CrossRefGoogle Scholar
7. Solomon, P., J. Vac. Sci. Technol. 14, 11221130 (1977).CrossRefGoogle Scholar
8. Ferry, D. K., J. Appl. Phys. 50, 14221427 (1979).CrossRefGoogle Scholar
9. Wolters, D. R., Springer Series Electrophys. 7, 180194 (1981).Google Scholar
10. Weeks, R. A., J. Non-Cryst. Solids 71, 435 (1985).CrossRefGoogle Scholar
11. Hanafusa, H., Hibino, Y., and Yamamoto, F., J. Appl. Phys. 58, 1356 (1985).CrossRefGoogle Scholar
12. Freund, M. M., Freund, F., and Batllo, F., Phys. Rev. Lett. 63, 20962099 (1989).CrossRefGoogle Scholar
13. Weast, R. C., Handbook of Chemistry and Physics (CRC Press, Cleveland, OH, 1975), E60.Google Scholar
14. Brower, K. L., Phys. Rev. B 20, 1799 (1979).CrossRefGoogle Scholar
15. Shelby, J. E., J. Appl. Phys. 51, 25892593 (1980).CrossRefGoogle Scholar
16Devine, R. A. B. and Fancou, J. M., Phys. Rev. B 41,1288212887 (1990).CrossRefGoogle Scholar
17. Griscom, D. L., J. Non-Cryst. Solids 68, 301325 (1984).CrossRefGoogle Scholar
18. Kinell, P. O., Komatsu, T., Lund, A., Shiga, T., and Shimizu, A., Acta Chem. Scand. 24, 32653275 (1970).CrossRefGoogle Scholar
19. Silin, A. R., Skuya, L. N., and Shendrik, A. V., Fiz. Khim. Stekla 4, 405410 (1978).Google Scholar
20. Edwards, A. H. and Fowler, W. B., Phys. Rev. B 26, 66496660 (1982).CrossRefGoogle Scholar
21. Freund, F. J., J. Non-Cryst. Solids 71, 195202 (1985).CrossRefGoogle Scholar
22. Griscom, D. L., Stapelbroek, M., and Friebele, E. J., J. Chem. Phys. 78, 16381651 (1983).CrossRefGoogle Scholar