Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-16T06:43:43.434Z Has data issue: false hasContentIssue false

Nitrogen-doped titanium oxide microrods decorated with titanium oxide nanosheets for visible light photocatalysis

Published online by Cambridge University Press:  31 January 2011

Eun Sun Kim
Affiliation:
Eco-friendly Catalyst and Energy Laboratory (NRL), Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Hyojadong, Pohang 790-784, Korea
Hyun Gyu Kim
Affiliation:
Busan Center, Korea Basic Science Institute (KBSI), Busan 609-735, Korea
Jae Sung Lee*
Affiliation:
Eco-friendly Catalyst and Energy Laboratory (NRL), Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Hyojadong, Pohang 790-784, Korea
*
a)Address all correspondence to this author. e-mail: jlee@postech.ac.kr
Get access

Abstract

Nitrogen-doped titania with a unique two-level hierarchical structure and visible light photocatalytic activity is reported. Thus, nitrogen-doped titanium oxide microrods decorated with N-doped titanium oxide nanosheets were synthesized by a hydrothermal reaction in NH4OH and postcalcination. During the calcination, the in situ incorporation of nitrogen atoms of ammonium ion into titania lattice was accompanied by the structural evolution from titanate to anatase titania. The morphological and structural evolution was monitored by scanning electron microscopy (SEM), x-ray diffraction (XRD), thermogravimetric analysis/differential thermal analysis (TGA/DTA), Raman, Fourier transform infrared (FTIR), x-ray absorption near edge structure (XANES), x-ray photoelectron spectroscopy (XPS), and adsorption isotherms. The N-doping brought visible light absorption, and the material exhibited high photocatalytic activity in the decomposition of Orange II under visible light irradiation (λ ≥ 400 nm), especially when it was loaded with 1 wt% Pt as a cocatalyst.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Chen, C.C., Herhold, A.B., Johnson, C.S., Alivisatos, A.P.Size dependence of structural metastability in semiconductor nanocrystals. Science 276, 398 (1997)CrossRefGoogle ScholarPubMed
2.Mann, S., Ozin, G.A.Synthesis of inorganic materials with complex form. Nature 382, 313 (1996)CrossRefGoogle Scholar
3.Tokudome, H., Miyauchi, M.Electrochromism of titanate-based nanotubes. Angew. Chem. Int. Ed. 44, 1974 (2005)CrossRefGoogle ScholarPubMed
4.Alivisatos, A.P.Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100, 13226 (1996)CrossRefGoogle Scholar
5.Riss, A., Berger, T., Grothe, H., Bernardi, J., Diwald, O., Knözinger, E.Chemical control of photoexcited states in titanate nanostructures. Nano Lett. 7, 313 (2007)CrossRefGoogle ScholarPubMed
6.Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., Niihara, K.Formation of titanium oxide nanotube. Langmuir 14, 3160 (1998)CrossRefGoogle Scholar
7.Sun, X., Chen, X., Li, Y.Large-scale synthesis of sodium and potassium titanate nanobelts. Inorg. Chem. 41, 4996 (2002)CrossRefGoogle ScholarPubMed
8.Chen, Q., Zhou, W., Du, G., Peng, L-M.Trititanate nanotubes made via a single alkali treatment. Adv. Mater. 14, 1208 (2002)3.0.CO;2-0>CrossRefGoogle Scholar
9.Horváth, E., Kukovecz, A., Kónya, Z., Kiricsi, I.Hydrothermal conversion of self-assembled titanate nanotubes into nanowires in a revolving autoclave. Chem. Mater. 19, 927 (2007)CrossRefGoogle Scholar
10.Ma, R., Fukuda, K., Sasaki, T., Osada, M., Bando, Y.Structural features of titanate nanotubes/nanobelts revealed by Raman, x-ray absorption fine structure and electron diffraction characterizations. J. Phys. Chem. B 109, 6210 (2005)CrossRefGoogle ScholarPubMed
11.Du, G.H., Chen, Q., Che, R.C., Yuan, Z.Y., Peng, L-M.Preparation and structure analysis of titanium oxide nanotubes. Appl. Phys. Lett. 79, 3702 (2001)CrossRefGoogle Scholar
12.Kim, J.C., Choi, J., Lee, Y.B., Hong, J.H., Lee, J.I., Yang, J.W., Lee, W.I., Hur, N.H.Enhanced photocatalytic activity in composites of TiO2 nanotubes and CdS nanoparticles. Chem. Commun. (Camb.) 5024 (2006)CrossRefGoogle ScholarPubMed
13.Torrente-Murciano, L., Lapkin, A.A., Bavykin, D.V., Walsh, F.C., Wilson, K.Highly selective Pd/titanate nanotube catalysts for the double-bond migration reaction. J. Catal. 245, 272 (2007)CrossRefGoogle Scholar
14.Lim, S.H., Luo, J., Zhong, Z., Ji, W., Lin, J.Room-temperature hydrogen uptake by TiO2 nanotubes. Inorg. Chem. 44, 4124 (2005)CrossRefGoogle Scholar
15.Wei, M., Qi, Z-m., Ichihara, M., Honma, I., Zhou, H.Ultralong single-crystal TiO2–B nanowires: Synthesis and electrochemical measurements. Chem. Phys. Lett. 424, 316 (2006)CrossRefGoogle Scholar
16.Lan, Y., Gao, X.P., Zhu, H.Y., Zheng, Z.F., Yan, T.Y., Wu, F., Ringer, S.P., Song, D.Y.Titanate nanotubes and nanorods prepared from rutile powder. Adv. Funct. Mater. 15, 1310 (2005)CrossRefGoogle Scholar
17.Qamar, M., Yoon, C.R., Oh, H.J., Kim, D.H., Jho, J.H., Lee, K.S., Lee, W.J., Lee, H.G., Kim, S.J.Effect of post treatments on the structure and thermal stability of titanate nanotubes. Nanotechnology 17, 5922 (2006)CrossRefGoogle Scholar
18.Morgado, E. Jr., Abreu, M.A.S., Moure, G.T., Marinkovic, B.A., Jardim, P.M., Araujo, A.S.Characterization of nanostructured titanates obtained by alkali treatment of TiO2-anatases with distinct crystal sizes. Chem. Mater. 19, 665 (2007)CrossRefGoogle Scholar
19.Zhu, H.Y., Lan, Y., Gao, X.P., Ringer, S.P., Zheng, Z.F., Song, D.Y., Zhao, J.C.Phase transition between nanostructures of titanate and titanium dioxides via simple wet-chemical reactions. J. Am. Chem. Soc. 127, 6730 (2005)CrossRefGoogle ScholarPubMed
20.Poudel, B., Wang, W.Z., Dames, C., Huang, J.Y., Kunwar, S., Wang, D.Z., Banerjee, D., Chen, G., Ren, Z.F.Formation of crystallized titania nanotubes and their transformation into nanowires. Nanotechnology 16, 1935 (2005)CrossRefGoogle Scholar
21.Zhang, S., Peng, L-M., Chen, Q., Du, G.H., Dawson, G., Zhou, W.Z.Formation mechanism of H2Ti3O7 nanotubes. Phys. Rev. Lett. 91, 256103 (2003)CrossRefGoogle ScholarPubMed
22.Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y.Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269 (2001)CrossRefGoogle ScholarPubMed
23.Lee, J.S.Photocatalytic water splitting under visible light with particulate semiconductor catalysts. Catal. Surv. Asia 9, 217 (2006)CrossRefGoogle Scholar
24.Rhee, C.H., Lee, J.S., Chung, S.H.Synthesis of nitrogen-doped titanium oxide nanostructures via a surfactant-free hydrothermal route. J. Mater. Res. 20, 3011 (2005)CrossRefGoogle Scholar
25.Rhee, C.H., Bae, S.W., Lee, J.S.Template-free hydrothermal synthesis of high surface area nitrogen-doped titania photocatalyst active under visible light. Chem. Lett. 34, 660 (2005)CrossRefGoogle Scholar
26.Jang, J.S., Kim, H.G., Ji, S.M., Bae, S.W., Jung, J.H., Shon, B.H., Lee, J.S.Formation of crystalline TiO2−xNx and its photocatalytic activity. J. Solid State Chem. 179, 1067 (2006)CrossRefGoogle Scholar
27.Kruk, M., Jaroniec, M.Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements. Langmuir 13, 6267 (1997)CrossRefGoogle Scholar
28.Ankudinov, A.L., Bouldin, C.E., Rehr, J.J., Sims, J., Hung, H.Parallel calculation of electron multiple scattering using Lanczos algorithms. Phys. Rev. B 65, 104107 (2002)CrossRefGoogle Scholar
29.Newville, M.IFEFFIT: Interactive XAFS analysis and FEFF fitting. J. Synchrotron Radiat. 8, 322 (2001)CrossRefGoogle ScholarPubMed
30.Choi, S.H., Lee, J.S.XAFS characterization of Pt–Mo bimetallic catalysts for CO hydrogenation. J. Catal. 167, 364 (1997)CrossRefGoogle Scholar
31.Park, E.D., Choi, S.H., Lee, J.S.Active states of Pd and Cu in carbon-supported wacker-type catalysts for low-temperature CO oxidation. J. Phys. Chem. B 104, 5586 (2000)CrossRefGoogle Scholar
32.Sayer, D.E., Bunker, B.A.X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES edited by D.C. Koningsberger and R. Prins (Wiley, New York 1988)211Google Scholar
33.Kim, W.B., Choi, S.H., Lee, J.S.Quantitative analysis of Ti–O–Si and Ti–O–Ti bonds in Ti–Si binary oxides by the linear combination of XANES. J. Phys. Chem. B 104, 8670 (2000)CrossRefGoogle Scholar
34.Lee, J.S., Kim, W.B., Choi, S.H.Linear combination of XANES for quantitative analysis of Ti–Si binary oxides. J. Synchrotron Radiat. 8, 163 (2001)CrossRefGoogle ScholarPubMed
35.Fukuda, K., Nakai, I., Oishi, C., Nomura, M., Harada, M., Yasuo, Y., Sasaki, T.Nanoarchitecture of semiconductor titania nanosheets revealed by polarization-dependent total reflection fluorescence x-ray absorption fine structure. J. Phys. Chem. B 108, 13088 (2004)CrossRefGoogle Scholar
36.Choi, H.C., Ahn, H-J., Jung, Y.M., Lee, M.K., Shin, H.J., Kim, S.B., Sung, Y-E.Characterization of the structures of size-selected TiO2 nanoparticles using x-ray absorption spectroscopy. Appl. Spectrosc. 58, 598 (2004)CrossRefGoogle ScholarPubMed
37.Sing, K.S.W., Evertt, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T.Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 57, 603 (1985)CrossRefGoogle Scholar
38.Saha, N.C., Tomkins, H.G.Titanium nitride oxidation chemistry: An x-ray photoelectron spectroscopy study. J. Appl. Phys. 72, 3072 (1992)CrossRefGoogle Scholar
39.Gole, J.L., Stout, J.D., Burda, C., Lou, Y., Chen, X.Highly efficient formation of visible light tunable TiO2−xNx photocatalysts and their transformation at the nanoscale. J. Phys. Chem. B 108, 1230 (2004)CrossRefGoogle Scholar
40.György, E., Pérez del Pino, A.A., Serra, P., Morenza, J.L.Surface nitridation of titanium by pulsed Nd:YAG laser irradiation. Appl. Surf. Sci. 186, 130 (2002)CrossRefGoogle Scholar