Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-28T17:17:34.872Z Has data issue: false hasContentIssue false

Synthesis, characterization, and properties of nanophase TiO2

Published online by Cambridge University Press:  31 January 2011

R. W. Siegel
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
S. Ramasamy
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
H. Hahn
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
L. Zongquan
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
L. Ting
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
R. Gronsky
Affiliation:
National Center for Electron Microscopy, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720
Get access

Abstract

Ultrafine-grained, nanophase samples of TiO2 (rutile) were synthesized by the gas-condensation method and subsequent in situ compaction. The samples were studied by a number of techniques, including transmission electron microscopy, Vickers microharness measurements, and positron annihilation spectroscopy, as a function of sintering temperature. The nanophase compacts with average initial grain sizes of 12 nm were found to densify rapidly above 500 °C, with only a small increase in grain size. The hardness values obtained by this method are comparable to or greater than those for coarser-grained compacts, but are achieved at temperatures 400 to 600 °C lower than conventional sintering temperatures and without the need for sintering aids.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kimoto, K., Kamiya, Y., Nonoyama, M., and Uyeda, R., Jpn. J. Appl. Phys. 2, 702 (1963).CrossRefGoogle Scholar
2Granqvist, C. G. andBuhrman, R. A., J. Appl. Phys. 47, 2200 (1976).CrossRefGoogle Scholar
3Tholen, A. R., Acta Metall. 27, 1765 (1979).CrossRefGoogle Scholar
4Gleiter, H., in Deformation of Polycrystals: Mechanisms and Micro-structures, edited by Hansen, N., Horsewell, A., Leffers, T., and Lilholt, H. (Risø National Laboratory, Roskilde, 1981), p. 15.Google Scholar
5Birringer, R., Herr, U., and Gleiter, H., Suppl. Trans. Jpn. Inst. Met. 27, 43 (1986).Google Scholar
6Siegel, R. W. and Hahn, H., in Current Trends in the Physics of Materials, edited by Yussouff, M. (World Scientific, Singapore, 1987), p. 403.Google Scholar
7Siegel, R. W., Hahn, H., Ramasamy, S., Zongquan, Li, Ting, Lu, and Gronksy, R., Proc. Intl. Conf. Interface Science and Engineering'87, Lake Placid, NY, July 1987, J. Phys. C, in press (1988).Google Scholar
8Bowen, H. K., Mater. Sci. Eng. 44, 1 (1980).Google Scholar
9Barringer, E. A. and Bowen, H. K., J. Am. Ceram. Soc. 65, C199 (1982).CrossRefGoogle Scholar
10Fegley, B. Jr , Barringer, E. A., and Bowen, H. K., J. Am. Ceram. Soc. 67, C113 (1984).CrossRefGoogle Scholar
11Gronsky, R., in Treatise on Materials Science and Technology Series: Experimental Techniques, edited by Herman, H. (Academic, New York, 1983), Vol. 19 B, p. 225.Google Scholar
12Hoshino, K., Peterson, N. L., and Wiley, C. L.. J. Phys. Chem. Solids 46, 1397 (1985).Google Scholar
13Hort, E., Diplom thesis, Universität des Saarlandes, Saarbrücken (1986).Google Scholar
14Zhu, X., Birringer, R., Herr, U., and Gleiter, H., Phys. Rev. B 35, 9085 (1987).Google Scholar
15Li, Z., Ramasamy, S., Hahn, H., and Siegel, R. W., Mater. Lett. 6, 195 (1988).Google Scholar
16Hahn, H., Eastman, J. A., and Siegel, R. W., Proceedings of the First International Conference on Ceramic Powder Processing Science (American Ceramic Society, Westerville, in press).Google Scholar