Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-26T23:58:20.732Z Has data issue: false hasContentIssue false

Effect of age, sex, genotype and environment on fat deposition in broiler chickens—A review

Published online by Cambridge University Press:  18 September 2007

F. R. Leenstra
Affiliation:
Spelderholt Centre for Poultry Research and Extension, 7361 DA Beekbergen, The Netherlands
Get access

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arafa, A. S., Boone, M. A., Janky, D. M., Wilson, M. R., Miles, R. D. and Harms, R. M. (1983). Energy restriction as a means of reducing fat pads in broilers. Poultry Science 62: 314320.CrossRefGoogle Scholar
Barbato, G. F., Siegel, P. B., Cherry, J. A. and Nir, I. (1984). Selection for body weight at eight weeks of age. 17. Overfeeding. Poultry Science 63: 1118.CrossRefGoogle ScholarPubMed
Bartov, I., Bornstein, S. and Lipstein, B. (1974). Effect of calory to protein ratio on the degree of fatness in broilers fed on practical diets. British Poultry Science 15: 107117.CrossRefGoogle Scholar
Becker, W. A., Spencer, J. V., Mirosh, L. W. and Verstrate, J. A. (1979). Prediction of fat and fat free live weight in broiler chickens using back-skin fat, abdominal fat and line weight. Poultry Science 58: 835842.CrossRefGoogle Scholar
Becker, W. A., Spencer, J. V., Mirosh, L. W. and Verstrate, J. A. (1981). Abdominal and carcass fat in five broiler strains. Poultry Science 60: 693697.CrossRefGoogle ScholarPubMed
Becker, W. A., Spencer, J. V., Mirosh, L. W. and Verstrate, J. A. (1984). Genetic variation of abdominal fat, body weight and carcass weight in a female broiler line. Poultry Science 63: 607611.CrossRefGoogle Scholar
Berg, R. T. (1982). Genetic and environmental factors influencing growth of muscle and fat tissue. In: Proceedings 2nd World Congress on Genetics Applied to Livestock Production, Madrid, Spain. Vol. V, 245251.Google Scholar
Brody, S. (1935). Nutrition. Annual Review of Biochemistry 4: 383412.CrossRefGoogle Scholar
Brody, T. B., Siegel, P. B. and Cherry, J. A. (1984). Age, body weight and body composition requirements for the onset of sexual maturity of dwarf and normal chickens. British Poultry Science 25: 245252.CrossRefGoogle ScholarPubMed
Burgener, J. A., Cherry, J. A. and Siegel, P. B. (1981). The association between sartorial fat and fat deposition in meat type chickens. Poultry Science 60: 5462.CrossRefGoogle Scholar
Cherry, J. A., Siegel, P. B. and Beane, W. L. (1978). Genetic-nutritional relationships in growth and carcass characteristics of broiler chickens. Poultry Science 57: 14821487.CrossRefGoogle Scholar
Cherry, J. A., Swartworth, W. J. and Siegel, P. B. (1984). Adipose cellularity studies in commercial broiler chickens. Poultry Science 63: 97108.CrossRefGoogle Scholar
Cöp, W. A. G. (1974). Protein and fat deposition in pigs in relation to body weight gain and feeding level. Mededelingen Landbouwhogeschool, Wageningen, No. 74/18.Google Scholar
Deaton, J. W., Kubena, L. F., Chen, T. C. and Reece, F. N. (1974). Factors influencing the quantity of abdominal fat in broilers. 2. Cage versus floor rearing. Poultry Science 53: 574576.CrossRefGoogle Scholar
Dickerson, G. E. (1982). Effect of genetic changes in components of growth on biological and economic efficiency of meat production. In: Proceedings 2nd World Congress on Genetics Applied to Livestock Production, Madrid, Spain. Vol. V, 252267.Google Scholar
Edwards, H. M. Jr., and Denman, F. (1975). Carcass composition studies. 2. Influences of breed, sex and diet on gross composition of the carcass and fatty acid composition of the adipose tissue. Poultry Science 54: 12301238.CrossRefGoogle ScholarPubMed
Edwards, H. M. Jr., Denman, F., Abou-Ashour, A. and Nugara, D. (1973). Carcass composition studies. 1. Influences of age, sex and type of dietary fat supplementation on total carcass and fatty acid composition. Poultry Science 52: 934948.CrossRefGoogle Scholar
Ehinger, F. and Seemann, G. (1982). Einfluss von Futter, Alter und Geschlecht auf Mastleistung und Schlachtkorperqualitat von Broilern verschiedener Herkunft. 2. Verfettungsgrad. Archiv fur Geflügelkunde 46: 177188.Google Scholar
Eisen, E. J. (1982). Growth and efficiency. In: Proceedings 2nd World Congress on Genetics Applied to Livestock Production, Madrid, Spain. Vol. V, 201217.Google Scholar
Elwinger, K. (1980). Performance and abdominal and carcass fat in broilers as influenced by strain and diet energy concentration. In: Proceedings 6th European Poultry Conference, Hamburg, Germany. Vol. III, 256263.Google Scholar
Es, A. J. H. Van (1981). Poultry production in relation to energy utilization and environment. In: World Poultry Production: where and how? pp 3954. Eds. Scheele, C. W. and Veerkamp, C. H., Beekbergen, The Netherlands.Google Scholar
Evans, A. J. (1977). The growth of fat. In: Growth and Poultry Meat Production pp 2964. Eds. Boorman, K. N. and Wilson, B. J. British Poultry Science Ltd. Edinburgh, Scotland.Google Scholar
Evans, D. G., Goodwin, T. L. and Andrews, L. D. (1976). Chemical composition, carcass yield and tenderness of broilers as influenced by rearing methods and genetic strains. Poultry Science 55: 748755.CrossRefGoogle Scholar
Farrell, D. J. (1974). Effects of dietary energy concentration on utilisation of energy by broiler chickens and on body composition determined by carcass analysis and predicted using tritium. British Poultry Science 15: 2541.CrossRefGoogle ScholarPubMed
Fisher, C. (1984). Fat deposition in broilers. In: Fats in animal nutrition. pp 437470. Proceedings of the 37th Nottingham Easter School. Ed. Wiseman, I., Nottingham, England.CrossRefGoogle Scholar
Fisher, C. and Wilson, B. J. (1974). Response to dietary energy concentration by growing chickens. In: Energy requirements of poultry. pp 151184. Eds. Morris, T. R. and Freeman, B. M., British Poultry Science, Ltd., Edinburgh, Scotland.Google Scholar
Fraps, G. S. (1943). Relation of protein, fat and energy of the ration to the composition of chickens. Poultry Science 22: 421.CrossRefGoogle Scholar
Freeman, C. P. (1983). Fat supplementation in animal production—monogastric animals. In: Proceedings of the Nutrition Society 42: 351359.CrossRefGoogle ScholarPubMed
Friars, G. W., Lin, C. Y., Patterson, D. L. and Irwin, L. N. (1983). Genetic and phenotypic parameters of fat deposition and associated traits in broilers. Poultry Science 62: 1425.Google Scholar
Gils, L. G. M. Van, Scheele, C. W., Janssen, W. M. M. A. and Verstegen, M. W. A. (1977). Factors influencing carcase composition and its estimation from water content. In: Growth and Poultry Meat Production. pp 175184. Eds. Boorman, K. N. and Wilson, B. J. British Poultry Science Ltd., Edinburgh, Scotland.Google Scholar
Grey, T. C., Robinson, D., Jones, J. M., Stock, S. W. and Thomas, N. L. (1983). Effect of age and sex on the composition of muscle and skin from a commercial broiler strain. British Poultry Science 24: 219231.CrossRefGoogle ScholarPubMed
Griffin, H. D. and Whitehead, C. C. (1982). The use of plasma triglyceride as a selection criterion in breeding leaner broilers. 24th British Poultry Breeders Roundtable ConferenceEdinburgh (UK).Google Scholar
Griffin, H. D., Whitehead, C. C. and Broadbent, L. A. (1982). The relationship between plasma triglyceride concentrations and body fat content in male and female broilers—a basis for selection? British Poultry Science 23: 1523.CrossRefGoogle ScholarPubMed
Griffith, L., Leeson, S. and Summers, J. D. (1977). Fat deposition in broilers: effect of dietary energy to protein balance and early life caloric restriction on production performance and abdominal fat pad size. Poultry Science 56: 638646.CrossRefGoogle Scholar
Griffith, L., Leeson, S. and Summers, J. D. (1978). Studies on abdominal fat with four commercial strains of male broiler chicken. Poultry Science 57: 11981203.CrossRefGoogle Scholar
Guillaume, J. and Summers, J. D. (1970). Maintenance and energy requirements of the rooster and influence of plane of nutrition on metabolizable energy. Canadian Journal of Animal Science 50: 363369.CrossRefGoogle Scholar
Gyles, N. R., Maeza, A. and Goodwin, T. L. (1982). Regression of abdominal fat in broilers on abdominal fat in spent parents. Poultry Science 61: 18091814.CrossRefGoogle Scholar
Gyles, N. R., Maeza, A. and Goodwin, T. L. (1984). Regression of abdominal fat in broilers on abdominal fat in spent parents on severe feed restriction. Poultry Science 63: 16891694.CrossRefGoogle Scholar
Håkansson, J., Eriksson, S. and Svensson, S. A. (1978). The influence of feed energy level on feed consumption, growth and development of different organs of chickens. Report No. 59. Swedish University of Agricultural Science, Department of Animal Husbandry.Google Scholar
Have, H. G. M. Ten and Scheele, C. W. (1981). A comparison of the effects of different factors on the carcase composition of three broiler strains at two ages. In: Quality of Poultry Meat. pp 386396. Eds. Mulder, R. W. A. W., Scheele, C. W. and Veerkamp, C. H., Beekbergen, The Netherlands.Google Scholar
Haye, U. and Simons, P. C. M. (1978). Twisted legs in broilers. British Poultry Science 19: 549557.CrossRefGoogle ScholarPubMed
Heath, J. L., Covey, R. C. and Owens, S. L. (1980). Abdominal leaf fat separation as a result of evisceration of broiler carcases. Poultry Science 59: 24562461.CrossRefGoogle Scholar
Holsheimer, J. P. (1975). The effect of changing energy-protein ratios on carcase composition of broilers. In: The quality of poultry meat. pp 45(1)45(10) Ed. Erdtsieck, B., Oosterbéek, The Netherlands.Google Scholar
Hood, R. L. (1982). The cellular basis for growth of the abdominal fat pad in broiler type chickens. Poultry Science 61: 117121.CrossRefGoogle ScholarPubMed
Hood, R. L. (1984). Cellular and biochemical aspects of fat deposition in broiler type chicken. World's Poultry Science Journal 40: 160169.CrossRefGoogle Scholar
Hood, R. L. and Pym, R. A. E. (1982). Correlated responses for lipogenesis and adipose tissue cellularity in chickens selected for body weight gain, food consumption and food conversion efficiency. Poultry Science 61: 122127.CrossRefGoogle Scholar
Jackson, S., Summers, J. D. and Leeson, S. (1982). Effect of dietary protein and energy on broiler carcase composition and efficiency of nutrient utilization. Poultry Science 61: 22242231.CrossRefGoogle Scholar
Jensen, L. S., Merrill, L. H., Reddy, C. V. and McGinnis, J. (1962). Observations on eating patterns and rate of food passage of birds fed pelleted and unpelleted diets. Poultry Science 41: 14141419.CrossRefGoogle Scholar
Kirchgessner, M., Roth-Maier, D. A. and Gerum, J. (1978). Körperzusammensetzung und Nährstoffansatz 3–5 Wochen alter Broiler bei unterschiedlicher Energie- und Eiweissversorgung. Archiv für Geflügelkunde 42: 6269.Google Scholar
Kubena, L. F., Deaton, J. W., Chen, T. C. and Reece, F. N. (1974). Factors influencing the quantity of abdominal fat in broilers. 1. Rearing temperature, sex, age or weight and dietary choline chloride and inositol supplementation. Poultry Science 53: 211214.CrossRefGoogle ScholarPubMed
Kubena, L. F., Lott, B. D., Deaton, J. W., Reece, F. N. and May, J. D. (1972). Body composition of chicks as influenced by environmental temperature and selected dietary factors. Poultry Science 51: 517522.CrossRefGoogle Scholar
Leclercq, B. (1983). The influence of dietary protein content on the performance of genetically lean or fat growing chickens. British Poultry Science 24: 581587.CrossRefGoogle ScholarPubMed
Leclercq, B., Blum, J. C. and Boyer, J. P. (1980). Selecting broiler for low or high abdominal fat: initial observations. British Poultry Science 21: 107113.CrossRefGoogle Scholar
Leclercq, B. and Saadoun, A. (1982). Selecting broilers for low or high abdominal fat: comparison of energy metabolism of the lean and fat lines. Poultry Science 61: 17991803.CrossRefGoogle Scholar
Leenstra, F. R. (1982). Genetic aspects of fat deposition and feed efficiency. 24th British Poultry Breeders Roundtable ConferenceEdinburgh, Scotland.Google Scholar
Leenstra, F. R. (1984). Influence of diet and genotype on carcass quality in poultry and their consequences for selection. In: Recent Advances in Animal Nutrition. pp 316. Eds. Haresign, W. and Cole, D. J. A., Butterworth, London, England.Google Scholar
Leveille, G. A., Romsos, D. R., Yeh, Y. Y. and O'Hea, E. K. (1975). Lipid biosynthesis in the chick. A consideration of site of synthesis, influence of diet and possible regulatory mechanisms. Poultry Science 54: 10751093.CrossRefGoogle Scholar
Lilburn, M. S., Leach, R. M. Jr., Buss, E. G. and Martin, R. J. (1982). The developmental characteristics of two strains of chickens selected for differences in mature abdominal fat pad size. Growth 46: 171181.Google ScholarPubMed
Lin, C. Y. (1981). Relationship between increased body weight and fat deposition in broilers. World's Poultry Science Journal 37: 106110.CrossRefGoogle Scholar
Lin, C. Y., Friars, G. W. and Moran, E. T. (1980). Genetic and environmental aspects of obesity in broilers. World's Poultry Science Journal 36: 103111.CrossRefGoogle Scholar
Lipstein, B., Bornstein, S. and Bartov, I. (1975). The replacement of some of the soybean meal by the first limiting amino-acids in practical broiler diets. 3. Effects of protein concentrations and amino acid supplementations in broiler finisher diets on fat deposition in the carcass. British Poultry Science 16: 627635.CrossRefGoogle Scholar
Lohman, T. G. (1973). Biological variation in body composition. Journal of Animal Science 32: 647653.CrossRefGoogle Scholar
Mabray, C. J. and Waldroup, P. W. (1981). The influence of dietary energy and amino acid levels on abdominal fat pad development of the broiler chicken. Poultry Science 60: 151159.CrossRefGoogle Scholar
March, B. E. (1984). Plasma triglyceride and glucose clearance in broiler-type and White Leghorn chickens with different degrees of adiposity. Poultry Science 63: 15861593.CrossRefGoogle ScholarPubMed
March, B. E. and Hansen, G. (1977). Lipid accumulation and cell multiplication in adipose bodies in White Leghorn and broiler-type chicks. Poultry Science 56: 886894.CrossRefGoogle ScholarPubMed
March, B. E., MacMillan, C. and Chu, S. (1984). Characteristics of adipose tissue growth in broiler-type chickens to 22 weeks of age and the effects of dietary protein and lipid. Poultry Science 63: 22072216.CrossRefGoogle ScholarPubMed
Marks, H. L. and Pesti, G. M. (1984). The roles of protein level and diet from in water consumption and abdominal fat deposition of broilers. Poultry Science 63: 16171625.CrossRefGoogle ScholarPubMed
Marks, H. L. and Washburn, K. W. (1983). The relationship of altered water/feed intake ratios on growth and abdominal fat in commercial broilers. Poultry Science 62: 263272.CrossRefGoogle ScholarPubMed
McCarthy, J. C. and Siegel, P. B. (1983). A review of genetical and physiological effects on selection in meat-type poultry. Animal Breeding Abstracts 51: 8794.Google Scholar
McLeod, J. A. (1982). Nutritional factors influencing carcass fat in broilers Zootechnica International 7: 6064.Google Scholar
Middelkoop, J. H. Van, Kuit, A. R. and Zegwaard, A. (1977). Genetic factors in broiler fat deposition. In: Growth and Poultry Meat Production. pp 131143. Eds. Boorman, K. N. and Wilson, B. J. British Poultry Science Ltd., Edinburgh, Scotland.Google Scholar
Neupert, B. and Hartfiel, W. (1978). Untersuchungen zur Mastleistung und Schlachtkörperzusammensetzung von Broilern in Abhängigkeit von Herkunft und Futterzusammensetzung. Archiv für Geflügelkunde 42: 150158.Google Scholar
Nir, I. and Lin, H. (1982). The skeleton, an important site of lipogenesis in the chick. Annales of Nutrition and Metabolism 26: 100105.CrossRefGoogle ScholarPubMed
Pesti, G. M., Whiting, T. S. and Jensen, L. S. (1983). The effect of crumbling on the relationship between dietary density and chick growth, feed efficiency and abdominal fat pad weights. Poultry Science 62: 490494.CrossRefGoogle Scholar
Pfaff, F. E. and Austic, R. E. (1976). Influence of diet on development of the abdominal fat pad in the pullet. Journal of Nutrition 106: 443450.CrossRefGoogle Scholar
Plucinski, T. M., Bruner, R. K., Leatherwood, J. M. and Eisen, E. J. (1984). Effects of feeding pattern and dietary regimen on growth and adipose tissue cellularity in polygenic obese mice. Journal of Animal Science 59: 350360.CrossRefGoogle ScholarPubMed
Pullar, J. D. and Webster, A. J. F. (1977). The energy cost of feed and protein deposition in the rat. British Journal of Nutrition 37: 355363.CrossRefGoogle Scholar
Pym, R. A. E. and Solvyns, A. J. (1979). Selection for food conversion in broilers: Body composition of birds selected for increased body-weight gain, food consumption and food conversion ratio. British Poultry Science 20: 8797.CrossRefGoogle Scholar
Ricard, F. H. (1975). Facteurs génétique influenfant la qualité des carcasses du poulet. In: The quality of Poultry meat. pp 4(1)4(16). Proceedings of the 2nd European Symposium on Poultry Meat Quality. Ed. Erdtsieck, B., Oosterbeek, The Netherlands.Google Scholar
Ricard, F. H. (1977). Influence de l'age et du patrimoine génétique sur l'état d'engraissement du poulet. In: La composition corporelle des volailles. Séance de travail. 10 1977, pp 7986. INRA, France.Google Scholar
Ricard, F. H. (1983). Mesure de l'état d'engraissement chez le poulet. Variabilité d'origine biologique. In: The quality of poultry meat. pp 4968. Proceedings of the 4th European Symposium on Poultry Meat Quality. Eds. Lahellec, C.:, Ricard, F. H. and Colin, P. Ploufrgan, France.Google Scholar
Ricard, F. H., Leclercq, B. and Marche, G. (1982). Rendement en viande de poulets de deux lignées sélectionnées sur l'état d'engraissement. Annales Génétiques et Sélection Animales 14: 551556.CrossRefGoogle Scholar
Ricard, F. H., Leclercq, B. and Touraille, C. (1983). Selecting broilers for low or high abdominal fat: distribution of carcase fat and quality of meat. British Poultry Science 24: 511516.CrossRefGoogle Scholar
Ricard, F. H. and Rouvier, R. (1967). Etude de la composition anatomique du poulet. 1. Variabilité de la répartition des differenties parties corporelles chez des coquelets Bresse-Pile. Annales Zootechniques 16: 2339.CrossRefGoogle Scholar
Ricard, F. H. and Rouvier, R. (1969). Etude de la composition anatomique du poulet. IV. Variabilité de la répartition des parties corporelles dans une souche de type Cornish. Annales Génétiques et Sélection Animales 1: 151165.Google Scholar
Scheele, C. W., Schagen, P. J. W. Van. and Have, H. G. M. Ten (1981). Abdominal and total fat content of three broiler strains at two ages affected by nutritional factors. In: Quality of Poultry Meat. pp 397407. Eds. Mulder, R. W. A. W., Scheele, C. W. and Veerkamp, C. H., Beekbergen, The Netherlands.Google Scholar
Shapira, N., Nir, I. and Budowsky, P. (1978). Response of lipogenic enzymes to over-feeding in liver and adipose tissue of light and heavy breeds of chicks. British Journal of Nutrition 39: 151157.CrossRefGoogle Scholar
Simon, J. and Leclercq, B. (1982). Longitudinal study of adiposity in chickens selected for high or low abdominal fat content: further evidence of a glucose-insulin inbalance in the fat line. Journal of Nutrition 112: 19611973.CrossRefGoogle ScholarPubMed
Summers, J. D. and Leeson, S. (1979). Composition of poultry meat as affected by nutritional factors. Poultry Science 58: 536542.CrossRefGoogle Scholar
Taylor, C. S. (1982). Theory of growth and feed efficiency in relation to maturity in body weight. In: Proceedings 2nd World Congress on Genetics Applied to Livestock Production. Vol. V, pp 218230, Madrid, Spain.Google Scholar
Tess, M. W., Bennett, G. L. and Dickerson, G. E. (1983). Simulation of genetic changes in life cycle efficiency of pork production. 1. A bio-economic model. Journal of Animal Science 56: 336353.CrossRefGoogle Scholar
Thomas, C. H., Glazener, E. W. and Blom, W. L. (1958). The relationship between feed conversion and ether extracts of broilers. Poultry Science 37: 11771179.CrossRefGoogle Scholar
Twining, P. V. Jr., Thomas, O. P. and Bossard, E. H. (1978). Effect of diet and type of birds on the carcase composition of broilers at 28, 49 and 59 days of age. Poultry Science 57: 492497.CrossRefGoogle Scholar
Walstra, P. (1980). Growth and carcase composition from birth to maturity in relation to feeding level and sex in Dutch landrace pigs. Mededelingen Landbouwhogeschool, Wageningen, The Netherlands, No. 80/4.Google Scholar
Washburn, K. W., Guill, R. A. and Edwards, H. M. Jr. (1975). Influence of genetic differences in feed efficiency on carcase composition of young chickens. Journal of Nutrition 105: 13111317.CrossRefGoogle Scholar
Yoshida, M. and Morimoto, H. (1970). Interrelationship between dietary protein level and carcase composition of chicks. Agricultural and Biological Chemistry 34: 414422.CrossRefGoogle Scholar