Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-29T07:31:54.676Z Has data issue: false hasContentIssue false

Proper minimal sets on compact connected 2-manifolds are nowhere dense

Published online by Cambridge University Press:  01 June 2008

SERGII˘ KOLYADA
Affiliation:
Institute of Mathematics, NASU, Tereshchenkivs’ka 3, 01601 Kiev, Ukraine (email: skolyada@imath.kiev.ua)
L’UBOMÍR SNOHA
Affiliation:
Department of Mathematics, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica, Slovakia (email: snoha@fpv.umb.sk)
SERGEI˘ TROFIMCHUK
Affiliation:
Instituto de Matemática y Física, Universidad de Talca, Casilla 747, Talca, Chile (email: trofimch@inst-mat.utalca.cl)

Abstract

Let be a compact connected two-dimensional manifold, with or without boundary, and let be a continuous map. We prove that if is a minimal set of the dynamical system then either or M is a nowhere dense subset of . Moreover, we add a shorter proof of the recent result of Blokh, Oversteegen and Tymchatyn, that in the former case is a torus or a Klein bottle.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Balibrea, F., Downarowicz, T., Hric, R., Snoha, L’. and Špitalský, V.. Almost totally disconnected minimal systems. Submitted.Google Scholar
[2]Balibrea, F., Hric, R. and Snoha, L’.. Minimal sets on graphs and dendrites (Dynamical systems and functional equations, Murcia, 2000). Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13(7) (2003), 17211725.Google Scholar
[3]Blokh, A., Oversteegen, L. and Tymchatyn, E.. On minimal maps of 2-manifolds. Ergod. Th. & Dynam. Sys. 25 (2005), 4157.CrossRefGoogle Scholar
[4]Blokh, A., Oversteegen, L. and Tymchatyn, E.. On almost one-to-one maps. Trans. Amer. Math. Soc. 358(11) (2006), 50035014 (electronic).CrossRefGoogle Scholar
[5]Bruin, H., Kolyada, S. and Snoha, L’.. Minimal nonhomogeneous continua. Colloq. Math. 95(1) (2003), 123132.CrossRefGoogle Scholar
[6]Daverman, R. J.. Decompositions of Manifolds (Pure and Applied Mathematics, 124). Academic Press, Orlando, FL, 1986.Google Scholar
[7]Dowker, Y. N.. On minimal sets in dynamical systems. Quart. J. Math. Oxford Ser. (2) 7 (1956), 516.CrossRefGoogle Scholar
[8]Ellis, R.. The construction of minimal discrete flows. Amer. J. Math. 87 (1965), 564574.CrossRefGoogle Scholar
[9] K. P. Hart, J.-I. Nagata and J. E. Vaughan (eds.). Encyclopedia of General Topology. Elsevier, Amsterdam, 2004.Google Scholar
[10]Engelking, R. and Sieklucki, K.. Topology: A Geometric Approach (Sigma Series in Pure Mathematics, 4). Heldermann, Berlin, 1992.Google Scholar
[11]Fathi, A. and Herman, M.. Existence de difféomorphismes minimaux. Asterisque 49 (1977), 3759.Google Scholar
[12]Fuller, F. B.. The existence of periodic points. Ann. of Math. (2) 57 (1953), 229230.CrossRefGoogle Scholar
[13]Gottschalk, W. H.. Orbit-closure decompositions and almost periodic properties. Bull. Amer. Math. Soc. 50 (1944), 915919.CrossRefGoogle Scholar
[14]Halpern, B.. Fixed points for iterates. Pacific J. Math. 25 (1968), 255275.CrossRefGoogle Scholar
[15]Kolyada, S., Snoha, L’. and Trofimchuk, S.. Noninvertible minimal maps. Fund. Math. 168 (2001), 141163.CrossRefGoogle Scholar
[16]Kuratowski, K.. Topology II. Academic Press, New York, 1968.Google Scholar
[17]Le Calvez, P. and Yoccoz, J.. Un théorème d’indice pour homeomorphismes du plan au voisinage d’un point fixe. Ann. Math. 146 (1997), 241293.CrossRefGoogle Scholar
[18]Mai, J.-H.. Pointwise-recurrent graph maps. Ergod. Th. & Dynam. Sys. 25(2) (2005), 629637.Google Scholar
[19]Moore, R. L.. Concerning upper semi-continuous collections. Monatsh. Math. Phys. 36(1) (1929), 8188.CrossRefGoogle Scholar
[20]Nadler, S. B. Jr. Continuum Theory: An Introduction (Monographs and Textbooks in Pure and Applied Mathematics, 158). Marcel Dekker, New York, 1992.Google Scholar
[21]Parry, W.. A note on cocycles in ergodic theory. Compositio Math. 28 (1974), 343350.Google Scholar
[22]Rees, M.. A point distal transformation of the torus. Israel J. Math. 32 (1979), 201208.CrossRefGoogle Scholar
[23]Roberts, J. H. and Steenrod, N. E.. Monotone transformations of two-dimensional manifolds. Ann. of Math. 39 (1938), 851862.CrossRefGoogle Scholar
[24]Whyburn, G. T.. Analytic Topology, Vol. 28. American Mathematical Society, Providence, RI, 1942.Google Scholar
[25]Ye, X.. D-function of a minimal set and an extension of Sharkovskii’s theorem to minimal sets. Ergod. Th. & Dynam. Sys. 12 (1992), 365376.CrossRefGoogle Scholar