Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-16T07:41:05.823Z Has data issue: false hasContentIssue false

Studies in the biochemistry of cirripede eggs. I. Changes in the general biochemical composition during development of Balanus balanoides and B. balanus

Published online by Cambridge University Press:  11 May 2009

H. Barnes
Affiliation:
The Marine Station, Millport, Scotland

Extract

The biochemical composition–water, glucose, soluble and insoluble glycogen, protein and non-protein nitrogen, total lipid–of the eggs of Balanus balanoides and B. balanus has been determined during development.

Preliminary analyses of the pigment content are reported.

The changes in both species are similar; but they take place more rapidly in B. balanus with its shorter period of embryonic development.

During development there is a net loss of all fractions; small increases of glucose and soluble nitrogen are, however, found at certain stages.

The pigment is largely a chromolipid; during the early stages of development this increases, but is subsequently lost; astaxanthin is also present. The visual appearance is a poor guide to pigment content.

The oxygen uptake of the eggs has been measured.

There is a discrepancy between the oxygen uptake measured directly and that required to oxidize the substrate lost; the causes of this are discussed.

The results are discussed relative to the habitats of the species.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1965

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abeloos, M. & Fischer, E., 1926. Sur l'origine et les migrations des pigments carotinoidés. chez les Crustaces. C.r.Seanc. Soc. Biol., Paris, T. 95, pp. 383–4.Google Scholar
Ball, E. G., 1944. A blue chromoprotein found in the eggs of the goose-barnacle. J. biol. Chem., Vol. 152, pp. 627–34.CrossRefGoogle Scholar
Barnes, H., 1953. An effect of parasitism on Balanus balanus (L.) da Costa. Nature, Land., Vol. 172, p. 128.CrossRefGoogle ScholarPubMed
Barnes, H., 1957 Processes of restoration and synchronization in marine ecology; the spring diatom increase and th e ‘;spawning’ of the common barnacle Balanus balanoides (L.). Année Biol., T. 33, pp. 6785.Google Scholar
Barnes, H. & Barnes, M., 1959. The effect of temperature on the oxygen uptake and rate of development of the egg masses of two common cirripedes, Balanus balanoides (L.) and Pollicipes polymerus J. B. Sowerby. Kieler Meeresforsch., Bd. 15, pp. 242–51.Google Scholar
Barnes, H. & Barnes, M., 1963. In vitro development of cirripede eggs. Vidensk. Meddr danske naturh. Foren., Vol. 125, pp. 93100.Google Scholar
Barnes, H., Barnes, M. & Finlayson, D. M., 1963. The seasonal changes in body weight, biochemical composition, and oxygen uptake of two common boreo-arctic cirripedes, Balanus balanoides (L.) and B. balanus (L.) da Costa. J. mar. biol. Ass. U.K., Vol. 43, pp. 185211.CrossRefGoogle Scholar
Boell, E. J., 1958. Embryonic energy exchange. In Embryonic Nutrition, ed. by Rudnick, D., pp. 110. The University of Chicago Press.Google Scholar
Crisp, D. J., 1954. The breeding of Balanus porcatus (da Costa) in the Irish Sea. J. mar. biol. Ass. U.K., Vol. 33, pp. 474–96.CrossRefGoogle Scholar
Crisp, D. J., 1959. Factors influencing the time of breeding of Balanus balanoides. Oikos, Vol. 10, pp. 275–89.CrossRefGoogle Scholar
Crisp, D. J., 1964. Racial differences between North American and European forms of Balanus balanoides. J. mar. biol. Ass. U.K., Vol. 44, pp. 3345.CrossRefGoogle Scholar
Crisp, D. J. & Davies, P. A., 1955. Observations in vivo on the breeding of Elminius modestus grown on glass slides. J. mar. biol. Ass. U.K., Vol. 34, pp. 357–80.CrossRefGoogle Scholar
Fischer, E., 1926. Sur l'absorption digestive chez les Crustacyés décapodes; les pigments carotinoïdes. C.r.Séanc. Soc. Biol., Paris, T. 96, pp. 850–2.Google Scholar
Fox, D. L., 1953. Animal Biochromes and Structural Colours. 379 pp. Cambridge University Press.Google Scholar
Goodwin, T. W., 1951. Carotenoid during the development of lobster eggs. Nature, Lond., Vol. 167, p. 559.CrossRefGoogle ScholarPubMed
Goodwin, T. W., 1952. The Comparative Biochemistry of the Carotenoids. 356 pp. London: Chapman and Hall Ltd.Google Scholar
Groom, T. T., 1894. On the early development of the Cirripedia. Phil Trans., B, Vol. 185, pp. 119232.Google Scholar
Kuhn, R. & Sorensen, N. A., 1938 a. über die Farbstoffe des Hummers (Astacus gammarus L.). Angezv. Chem., Bd. 51, pp. 465–8.CrossRefGoogle Scholar
Kuhn, R. & Sorensen, N. A., 1938 b. über Astaxanthin und Ovoverdin. Ber. dt. chem. Ges., Bd. 71, pp. 1879–88.CrossRefGoogle Scholar
Lwoff, A., 1925. Un carotinoide, pigment oculaire de Copepodes. Sur origine et sur evolution pendant l'ontogénèse. C.r.Seanc. Soc. Biol., Paris, T. 93, pp. 1602–4.Google Scholar
Lwoff, A., 1927. Le cycle du pigment carotinoide chez Idya furcata (Baird) (Copépode harpacticide). Nature, origine, évolution du pigment et des reserves ovulaires au cour de la segmentation. Structure de l'oeil chez les copépodes. Bull. biol. Fr. Belg., T. 61, pp. 193240.Google Scholar
Needham, J., 1931. Chemical Embryology. Cambridge University Press.CrossRefGoogle Scholar
Patel, B. S., 1959. The influence of temperature on the reproduction and moulting of Lepas anatifera L. under laboratory conditions. J. mar. biol. Ass., Vol. 38, pp. 589–97CrossRefGoogle Scholar
Patel, B. S. & Crisp, D. J., 1960 a. Rates of development of the embryos of several species of barnacles. Physiol. ZoöL, Vol. 33, pp. 104–19.CrossRefGoogle Scholar
Patel, B. S. & Crisp, D. J., 1960 b. The influence of temperature on the breeding and moulting activities of some warm water species of operculate barnacles. J. mar. biol. Ass. U.K., Vol. 39, pp. 667–80.CrossRefGoogle Scholar
Rothschild, Lord & Barnes, H., 1953. The inorganic constituents of the sea urchin egg. J. exp. Biol., Vol. 30, pp. 534–44CrossRefGoogle Scholar
Rzepishevsky, I. K., 1962. Conditions of the mass liberation of the nauplii of the common barnacle Balanus balanoides (L.) in the Eastern Murman. Int. Revue ges. Hydrobiol. Hydrogr, Vol. 47, pp. 471–9.CrossRefGoogle Scholar
Stern, K. G. & Salomon, K., 1938. On ovoverdin, the carotenoid-protein pigment of the egg of the lobster. J. biol. Chem., Vol. 122, pp. 461–75.CrossRefGoogle Scholar
Stetten, D. (JR.) & Stetten, M. R., 1960. Glycogen metabolism. Physiol. Rev., Vol. 40, pp. 505–37CrossRefGoogle ScholarPubMed
Walley, L. J., 1965. The development and function of the oviducal gland in Balanus balanoides. J. mar. biol. Ass. U.K., Vol. 45, pp. 115128.CrossRefGoogle Scholar