Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-28T08:19:30.368Z Has data issue: false hasContentIssue false

Natural rutile-derived titanate nanofibers prepared by direct hydrothermal processing

Published online by Cambridge University Press:  01 April 2005

Yoshikazu Suzuki*
Affiliation:
Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
Sorapong Pavasupree
Affiliation:
Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
Susumu Yoshikawa
Affiliation:
Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
Ryoji Kawahata
Affiliation:
Iwatani International Corporation, Osaka 541-0053, Japan
*
a) Address all correspondence to this author. e-mail: suzuki@iae.kyoto-u.ac.jp
Get access

Abstract

Long titanate nanofibers (typically 10–500 μm in length and 20–50 nm in diameter) were successfully prepared in high yield by the direct hydrothermal processing using natural rutile as a starting material. Fourier transform infrared spectroscopy, transmission electron microscopy, energy dispersive x-ray spectroscopy, electron diffraction, and x-ray diffraction demonstrated that the as-synthesized nanofibers presumably consisted of sodium hydrogen trititanate [(Na,H)2Ti3O7, e.g., Na0.4H1.6Ti3O7] including some hexatitanate-type defects [(Na,H)2Ti6O13]. A partial topotactic condensation model explained their nanostructure well. Although the as-synthesized fibers are defective, they can be cured by a post-heat-treatment in air. The direct hydrothermal treatment for natural rutile will be a promising low-cost process for one-dimensional nanomaterials, which can act not only as a reaction step but also as a purification step.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Li, D. and Xia, Y.N.: Fabrication of titania nanofibers by electrospinning. Nano Lett. 3, 555 (2003).CrossRefGoogle Scholar
2. Yoo, S., Akbar, S.A. and Sandhage, K.H.: Nanocarving of buld titania crystals into oriented arrays of single-crystal nanofibers via reaction with hydrogen-bearing gas. Adv. Mater. 16, 260 (2004).CrossRefGoogle Scholar
3. Hoyer, P.: Formation of titanium oxide nanotube array. Langmuir 12, 1411 (1996).CrossRefGoogle Scholar
4. Imai, H., Takei, Y., Shimizu, K., Matsuda, M. and Hirashima, H.: Direct preparation of anatase TiO2 nanotubes in porous alumina membranes. J. Mater. Chem. 9, 2971 (1999).CrossRefGoogle Scholar
5. Gong, D., Grimes, C.A., Varghese, O.K., Hu, W.C., Singh, R.S., Chen, Z. and Dickey, E.C.: Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 16, 3331 (2001).CrossRefGoogle Scholar
6. Sun, J., Gao, L. and Zhang, Q.H.: TiO2 tubes synthesized by using ammonium sulfate and carbon nanotubes as templates. J. Mater. Sci. Lett. 22, 339 (2003).CrossRefGoogle Scholar
7. Kobayashi, S., Hanabusa, K., Hamasaki, N., Kimura, M., Shirai, H. and Shinkai, S.: Preparation of TiO2 hollow-fibers using supramolecular assemblies. Chem. Mater. 12, 1523 (2000).CrossRefGoogle Scholar
8. Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T. and Niihara, K.: Formation of titanium oxide nanotube. Langmuir 14, 3160 (1998).CrossRefGoogle Scholar
9. Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T. and Niihara, K.: Titania nanotubes prepared by chemical processing. Adv. Mater. 11, 1307 (1999).3.0.CO;2-H>CrossRefGoogle Scholar
10. Du, G.H., Chen, Q., Che, R.C., Yuan, Z.Y. and Peng, L.M.: Preparation and structure analysis of titanium oxide nanotubes. Appl. Phys. Lett. 79, 3702 (2001).CrossRefGoogle Scholar
11. Chen, Q., Du, G.H., Zhang, S. and Peng, L.M.: The structure of trititanate nanotubes. Acta Crystallogr. B 58, 587 (2002).CrossRefGoogle ScholarPubMed
12. Chen, Q., Zhou, W.Z., Du, G.H. and Peng, L.M.: Trititanate nanotubes made via a single alkali treatment. Adv. Mater. 14, 1208 (2002).3.0.CO;2-0>CrossRefGoogle Scholar
13. Zhang, S., Peng, L.M., Chen, Q., Du, G.H., Dawson, G. and Zhou, W.Z.: Formation mechanism of H2Ti3O7 nanotubes. Phys. Rev. Lett. 91, 259103 (2003).CrossRefGoogle ScholarPubMed
14. Sun, X. and Li, Y.: Synthesis and characterization of ion-exchangeable titanate nanotubes. Chem. Eur. J. 9, 2229 (2003).CrossRefGoogle ScholarPubMed
15. Ma, R.Z., Bando, Y. and Sasaki, T.: Nanotubes of lepidocrocite titanates. Chem. Phys. Lett. 380, 577 (2003).CrossRefGoogle Scholar
16. Yang, J., Jin, Z., Wang, X., Li, W., Zhang, J., Zhang, S., Guo, X. and Zhang, Z.: Study on composition, structure and formation process of Nanotube Na2Ti2O4(OH)2 Darton Trans. 20, 3398 (2003).Google Scholar
17. Suzuki, Y. and Yoshikawa, S.: Synthesis and thermal analyses of TiO2-derived nanotubes prepared by the hydrothermal method. J. Mater. Res. 19, 982 (2004).CrossRefGoogle Scholar
18. Suzuki, Y., Sakulkhaemaruethai, S., Yoshida, R. and Yoshikawa, S.: Heat treatment effect on the structure of TiO2-derived nanotubes prepared by hydrothermal method. Ceram. Trans. 159, 185 (2005).Google Scholar
19. Armstrong, A.R., Armstrong, G., Canales, J. and Bruce, P.G.: TiO2–B Nanowires. Angew. Chem. Int. Ed. Engl. 43, 2286 (2004).CrossRefGoogle Scholar
20. Du, G.H., Chen, Q., Han, P.D., Yu, Y. and Peng, L.M.: Potassium titanate nanowires: Structure, growth, and optical properties. Phys. Rev. B 67, 035323 (2003).CrossRefGoogle Scholar
21. Fujiki, Y. and Mitsuhashi, T.: Preparation of K2Ti6O13 fibers and its related composite fibers using natural rutile or anatase ores—As derivatives of K2Ti2O5 fibers. J. Ceram. Soc. Jpn. 96, 1109 1988 , in Japanese.CrossRefGoogle Scholar
22. Hong, J., Cao, J., Sun, J., Li, H., Chen, H. and Wang, M.: Electronic structure of titanium oxide nanotubes. Chem. Phys. Lett. 380, 366 (2003).CrossRefGoogle Scholar
23. Sekino, T.: Does the one-dimensional nanospace in titania nanotubes contribute to the functionalization? in Preprints of the 6th Kansai Branch Forum for Young Scientists and Engineers on Ceramic Studies, The Ceramic Society of Japan, 2003 , p. 28 (in Japanese).Google Scholar
24. Busca, G., Ramis, G., Amores, J.M.G., Escribano, V.S. and Piaggio, P.: FT Raman and FTIR studies of titanias and metatitanate powders. J. Chem. Soc., Faraday Trans. 90, 3181 (1994).CrossRefGoogle Scholar
25. Peng, G.W., Chen, S.K. and Liu, H.S.: Infrared-absorption spectra and their correlation with the Ti–O bond-length variations for TiO2 (rutile), Na-titanates, and Na-titanosilicate (natisite, Na2TiOSiO4). Appl. Spectrosc. 49, 1646 (1995).CrossRefGoogle Scholar
26. Feist, T.P. and Davies, P.K.: The soft chemical synthesis of TiO2 (B) from layered titanates. J. Solid State Chem. 101, 275 (1992).CrossRefGoogle Scholar
27. Andersson, S. and Wadsley, A.D.: The structures of Na2Ti6O13 and Rb2Ti6O13 and the alkali metal titanates. Acta Crystallogr. 15, 194 (1962).CrossRefGoogle Scholar
28) Pavasupree, S., Suzuki, Y., Yoshikawa, S., and Kawahata, R.: Unpublished work.Google Scholar