Structural Properties of SrTiO$_3$/GaAs Hetero-interfaces

Liang Hong1, Ravi Droopad2, Serdar Öğüt1 and Robert F. Klie1

1. Department of Physics, University of Illinois at Chicago, Chicago, IL
2. Ingram School of Engineering, Texas State University, San Marcos, TX

The SrTiO$_3$/GaAs hetero-interface is being studied due to the interest of using it in metal-oxide-semiconductor field-effect transistors, where the GaAs substrate would act as the semi-insulating base material and the SrTiO$_3$ would act as the barrier oxide layer between the GaAs and the gate material. Previously, SrTiO$_3$ ultra-thin film deposited on As-terminated GaAs substrate have been studied experimentally [1-3]. SrO termination for SrTiO$_3$ is found to be more stable than TiO$_2$ at the interface. However, whether Ga- or As-terminated GaAs is more stable at the interface remains unclear. In this work, GaAs thin film layers are grown on SrTiO$_3$ instead of using GaAs as substrate. The SrTiO$_3$/GaAs hetero-interface is characterized using atomic-resolution Z-contrast imaging and energy dispersive spectroscopy (EDS) mapping, along with density functional theory (DFT) calculations.

The sample used in this work is grown using molecular beam epitaxy method. A 10 nm Sr-terminated SrTiO$_3$ thin film is grown on Si (001) substrate with a 4° miscut in the [110] direction and a 2 nm thick SiO$_2$ buffer layer. Simultaneous Ga and As$_2$ are exposed to the SrTiO$_3$ surface to form a 1 µm thick epitaxial GaAs layer. The Z-contrast images (Figure 1a and b) are obtained using the aberration-corrected JEOL JEM-ARM200CF scanning transmission electron microscopy (STEM) at 200kV. Figure 1a shows the layered structure of the sample. Step structures are observed at SrTiO$_3$ (001) surface. Figure 1b shows the atomic structure at the SrTiO$_3$/GaAs interface, and can be separated into two areas (Area I and Area II) according to the two steps at SrTiO$_3$ surface. In Area I, we find that the SrTiO$_3$[100] direction is parallel to GaAs[110], and the heterointerface appears sharp with the GaAs dumbbells in perfect registry with the O atoms in the SrO terminating layer. Due to the step of one unit cell of SrTiO$_3$ (3.90 Å), 3/4 unit cell of GaAs (4.24 Å) is missing at the interface in Area II. Therefore, GaAs columns in Area II are not perfectly aligned with SrTiO$_3$ columns due to the lattice mismatch as shown in the image. The sequence of the GaAs dumbbell is determined using the intensity line scan in the Z-contrast image along with atomic-resolution EDS mapping as shown in Figure 2a and b. The intensity profile is consistent with the EDS mapping that the sequence of the GaAs dumbbell in the Z-contrast image is Ga-As, which means, at the interface, the GaAs film is terminated with Ga in Area I while terminated with As in Area II as the structural model inset shown in Figure 1b. According to our DFT calculations [4], the SrO/Ga interface with Ga-O bonding is energetically most favorable among all the proposed configurations, which is in good agreement with the Z-contrast image in Area I. The interfacial structure becomes more interesting when SrTiO$_3$ steps are introduced as shown in Area II. A more detailed study of the step structures using electron energy-loss spectroscopy will be presented where the fine structure of interfacial atoms will be examined. [5]

References:
[5] This work was supported by the National Science Foundation (Grant No. DMR-1408427).
Figure 1 (a) Cross-sectional Z-contrast STEM image of the layered structure of the sample used in this work. (b) (Color online) Atomic-resolution Z-contrast STEM image of the SrTiO$_3$/GaAs hetero-interface. The proposed structural models of the atomic arrangement at the interface are shown as insets. The step structure of the interface is marked by blue solid line. Area I and II are separated by blue dashed line. Radial Wiener Filter within Gatan Digital Micrograph is used to reduce noise in the Z-contrast images.

Figure 2 (a) Intensity scan of the Sr/GaAs atomic column in the Z-contrast image in Figure 1b. The dashed line denotes the interface. The intensity is averaged for the eight Sr/GaAs atomic columns in Area I and is smoothed using Gaussian function. Since the intensity is proportional to Z^2, where Z is the atomic number, the intensity of Ga atoms is slightly lower than that of As atoms. (b) (Color online) Atomic-resolution EDS mapping of GaAs near the interface. Ga (As) atoms locate at the lower (upper) positions in the dumbbells.