Direct Observation of Atomic Surface Structures of CeO$_2$ Nanoparticles

Jianguo Wen1, Yuyuan Lin2, Zili Wu3, Kenneth R. Poeppelmeier2,4, and Laurence D. Marks2

1Electron Microscopy Center, Argonne National Laboratory, Argonne, IL 60439
2Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
3Chemical Science Division & Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831
4Department of Chemistry, Northwestern University, Evanston, IL 60208

CeO$_2$ has a wide range of applications such as catalysts and as electrodes in solid oxide fuel cells due to its unique physical, chemical and electrochemical properties [1,2]. Many of these applications are related to surface structures of CeO$_2$. For example CeO$_2$ nanoparticles are used as a catalytic support since surface oxygen vacancies are expected to promote catalytic metal particle dispersion [1]. However, due to the lack of clear observation of oxygen columns using TEM or scanning TEM, atomic surface structures of CeO$_2$ nanoparticles are under debate. Using high resolution electron microscopy with Argonne Chromatic Aberration-corrected TEM, we are able to observe both Ce and O columns, allowing us to directly observe atomic structures of the (100), (110) and (111) surfaces of CeO$_2$ nanoparticles.

CeO$_2$ nanocubes consists 6 dominant flat (100) surfaces, 12 edge (110) surfaces, and 8 corner (111) surfaces. Fig. 1 shows HREM images of the predominantly exposed (100) surface along [110] zone axis. Fig. 1b shows two distinctive surface structures on (100) surface, one is a surface with a Ce termination (yellow bar) and another surface with an O termination (red bar). Thus both O and Ce terminations can exist on the same surface. (100) surface typically has a mixture of Ce, O, and reduced CeO terminations (Fig. 1e). HREM simulation indicates that partial occupancy of the outermost layer occurs at both Ce and O positions, resulting the exposure of the subsurface layer. During HREM observation, the hopping of atoms on the surface is often observed even when the electron beam intensity is reduced to 5×10^2 e/Å2s [3].

HREM image in Fig. 2a shows that the (110) surface consists of flat CeO$_2$$_{2-x}$ terminations and small amount of “saw-like” (111) nanofacets indicated by white arrows. For the flat part of the (110) surface, partial surface oxygen vacancies result in two types of termination layers: (110) surface with a CeO$_2$ surface termination and (110) surface with a Ce termination as supported in simulated images in Fig. 2b and 2c. A line profile of the surface layer from A1 to A2 shows more clearly the existence of many surface O vacancies. We observed an average of approximately 30% oxygen vacancies on the flat (110) surface of CeO$_2$ nanocubes.

The (111) facet is determined as O-terminated by comparing simulated HREM image with the O-terminated surface with the experimental surface contrast, which is in agreement with the previous IR studies and electrostatic considerations for the surface HREM observations of all three surfaces indicate that surface reconstruction, nanofacet, and surface vacancies need to be considered when establishing the structure-catalysis relationship for CeO$_2$ nanoparticles [4].

References:

[4] We acknowledge funding from Northwestern University Institute for Catalysis in Energy Processes (ICEP) on grant number DOE DE-FG02-03-ER15457 (Y.L., K.R.P. and L.D.M.). The electron microscopy was performed at the Electron Microscopy Center at Argonne National Laboratory, a U.S. Department of Energy Office of Science Laboratory operated under Contract No. DE-AC02-06CH11357 by UChicago Argonne, LLC. The synthesis of ceria nanocubes was conducted at Oak Ridge National Laboratory and was sponsored by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy.

Fig. 1. Atomic structure of (100) surfaces of CeO$_2$ nanocubes. (a) A HREM image of a typical CeO$_2$ nanocube along [110]. (b) A magnified HREM image of the (100) surface of (a), highlighted with the blue box. (c)-(d) Simulated HREM images of (b) using Ce and O terminations respectively. (e) A magnified HREM image of the (100) surface of (a), highlighted with the white box. Regions I-IV shows the (100) surfaces with different terminations or occupancies.

Fig. 2. (110) surfaces of CeO$_2$ nanocubes. (a) An experimental HREM image on a (110) surface of CeO$_2$ nanocubes along [110]. The white arrows indicate (111) nanofacets. (b) A simulated HREM image of the CeO$_2$ (110) surface with a CeO$_2$ surface termination. (c) A simulated HREM image of the CeO$_2$ (110) surface with a Ce termination. (d) Integrated line profiles from A1 to A2 indicated in (a). O vacancies are indicated by the squares (□).