Multi-scale Imaging of Al-7at.%Cu Eutectics using Micro- and Nano-scale X-ray Computed Tomography

Brian M. Patterson1, Kevin C. Henderson1, Paul J. Gibbs1, Seth Imhoff1, and Amy J. Clarke1

1Los Alamos National Laboratory, Materials Science and Technology Division, Los Alamos, USA.

Multi-scale X-ray computed tomography has the ability in the laboratory to answer a variety of questions related to the structure of materials, as well as the resultant differentiation of materials during solidification. Laboratory based ‘micro-scale’ systems (i.e., imaging with fields of view from 1 to 10’s of mm) can produce 3D, non-destructive images with ~1-μm resolution. This scale is useful for meso-scale structure and metallic primary solidification dendritic structures and can be used to examine structural morphology and changes in morphology as a result processing both quantitatively and non-destructively and in three dimensions [1-3]. ‘Nano-scale’ CT has the ability to measure ~100 μm field of view down to ~10’s of μm field of view, with resolution of ~50 nm. These systems can be used to measure micro-scale features and solidification eutectics.

Aluminum-copper eutectics are ideal systems for the study of solidification due to their high X-ray contrast and well differentiated structures; an added bonus is that the resultant microstructure has features on two length scales. A typical ‘micro-scale’ CT is shown in Figure 1, highlighting the separation of the Al and Cu-containing regions. The primary dendritic structure, with ligaments 20-100 μm in thickness, lends itself very well to ‘micro-scale’ CT. Within the Cu-containing regions, eutectic structures with ~2 μm thick lamella are present and are ideal for imaging with ‘nano-scale’ CT. Three 100 μm thick foils of an Al-7at.%Cu alloy were melted and cooled in a boron nitride crucible at various cooling rates. The cooling rates were 0.44, 0.67, and 1.33 °C/s, in order to develop distinct microstructures. Micro-scale CT was used to ‘pre-screen’ samples and locate areas of interest, as well as aid in determining the ‘global’ structure of the material. Figure 2 shows a series of radiographs of a foil, imaged using micro-CT and stitching a series of radiographs together (Figure 2a). A ~60 μm diameter post was then machined and is shown relative to the original radiograph. Finally, the samples were then radiographed using a nano-scale CT (Figure 2c).

Results indicate that there are differences in the secondary dendritic arm spacing’s seen in the radiographs of the three foils at the ‘micro-scale’. Reconstructed slices (Figure 3(left)) show the ~1-μm lamella present in the Cu-containing eutectic. Overlaying the images from the two length scales (Figure 3(middle)) and finally measuring the lamella thicknesses (Figure 3 (right)) gives an indication of the effect of cooling rate upon solidification. The thickness of the lamella decreases linearly with an increasing cooling rate[4].

References:

[4] We gratefully acknowledge support from AJC’s Early Career award from the U.S. DOE, Division of Materials Sciences and Engineering.

Figure 1: Micro-scale X-ray CT of an Al-7at.%Cu sample. The Cu-containing region is lighter in the reconstructed slice and rendered in 3D on the right. Eutectic structure is beginning to be resolved and a couple of features are seen in this 1.21 μm isotropic voxel sized image (red circles).

Figure 2: Successively higher resolution radiographs of a thin film of Al-7at.%Cu. (a) has voxel size of 2.48 μm. (b) is an overlay of the radiography with the piece after it has been machined into a 60 μm post. (c) shows the same post radiographed with a ‘nano-scale’ tomography instrument.

Figure 3: Reconstructed slice (left), overlay of the ‘nano-scale’ (65-μm voxel) and the ‘micro-scale’ image of the Al-7at.%Cu eutectic (middle), and a measurement of the eutectic lamella thickness (right).