Thermoelectric materials, capable of scavenging electric power from sources of waste heat, are one of promising choices for relaxing global energy problems [1]. However, the low energy conversion efficiency limits such smart materials to put into use widely. We achieved an excellent thermoelectric performance in 2.5% K doped PbTe$_{0.7}$S$_{0.3}$ sample: one of the highest dimensionless figure of merit (ZT) of 2.2 at 923 K and the highest energy conversion efficiency of ~20.7% (i.e. the highest average ZT of 1.56) for non-segmented thermoelectric devices. Hopefully, this work highlights a realistic prospect of wide thermoelectric application with high ZT (above 3). In order to obtain the above high performance, we subtly tuned K doping level in spinodal decomposed PbTe$_{0.7}$S$_{0.3}$ system to firstly realize a simultaneous enhancement of electrical conductivity and Seebeck coefficient and a reduction of thermal conductivity [2]. Accordingly, a precise characterization and analysis of microstructure as they relate to thermoelectric performance are vitally important for the fundamental understanding of this peculiar thermoelectric material. **The presentation will cover S/TEM microscopy and microanalysis strategy to unravel microstructural influence on thermoelectric properties and associated phenomena.**

The nominal x% K doped PbTe$_{0.7}$S$_{0.3}$ composition spinodally decomposes into two phases: PbTe and PbS. Meanwhile, mesoscale grains can be obtained via spark plasma sintering. Thus high density of grain/phase boundaries can be got, as shown in **Fig. 1(a) and (b)**. Lattice images and schematic maps in **Fig. 1(c-f)** reveal that both grain/phase boundaries are semi-coherent and full of edge dislocations and strains. Besides the mesoscale grain regions, nanoscale precipitates can always be found widely but distinctly inside PbTe and PbS regions. **Fig. 2** gives microstructure evolution of precipitates as a function of K doping in PbS and PbTe regions in x% K doped PbTe$_{0.7}$S$_{0.3}$ samples. For PbS regions (**Fig. 2(a-d)**), with the increase of K doping, the density of precipitates is almost unchanged, while the morphology changes a lot, from platelet-like for lowly K doping (x<2.5) to cubical one for certain K doping (x=2.5), and finally to sticking-sphere for highly K doping (x>2.5). On the contrast, the density and size of precipitates in PbTe regions increase with the increase of K doping, **Fig. 2(e-g)**. The underlying mechanism of the above evolutions is the solubility difference of K in PbTe, PbS and PbTeS compounds. **Fig. 3** is detailed structural analysis of the cubical precipitates of 2.5% K doped PbTe$_{0.7}$S$_{0.3}$. Diffraction patterns in **Fig. 3(a), 3(c) and 3(e)** show two types of superlattices besides the main reflections, i.e., near-1/3 (2,0,0) and near-(1,1/3,0) superlattices, from different precipitates. Correspondingly, lattice images of cubical precipitates in real space exhibit a 3-layers period, **Fig. 3(b) and 3(d)**. Furthermore, the near-1/3 superlattices can be expressed as (1/3-ε)(2, 0, 0) or (1/3-ε)(0, 2, 0) accurately due to the substitution of Te on S sites, with deviation parameter ε, **Fig. 3(g)**. It is clearly shown that superlattices are due to chemical ordering in cubical PbTe$_{1/6}$S$_{5/6}$ precipitates, as shown in **Fig. 3(f)**. Therefore, nanoscale precipitates combining with long-wavelength phonon scattering centers (mesoscale grain/phase boundaries), and short-wavelength phonon scattering centers (atomic-scale
dislocation/strain/point defects), established a hierarchical architecture to effectively scatter phonons with all lengths.

Reference:

Figure 1. (a) TEM image reveals mesoscale PbTe/PbS grains; (b) Grain size distribution histogram; (c) and (d) Lattice image of PbS/PbS grain boundary and PbTe/PbS phase boundary, respectively. ED patterns, enlarged images for edge dislocations and GPA analysis images are inserted; (e) and (f) schematic figures showing the grain and phase boundary, respectively.

Figure 2. (a-d) Images showing platelet-like, cubical, and sticking-sphere precipitates in PbS regions for 0.5% K, 2.5% K and 3.0% K samples, respectively. (e-g) Images showing roughly homogeneous contrast with only some weak-contrast particles, low density of precipitates with a grown size, and high density of larger precipitates for 0.5% K, 2.0% K and 2.5% K samples, respectively.

Figure 3. (a-g) Structural analysis of cubical precipitates of 2.5% K sample: (a) ED pattern of Figure 2(b), showing two types of superlattices besides the main reflections, i.e., near-1/3 (200) and near-(1 1/3 0) superlattices; (b) and (d) Enlarged image of precipitates, 3-layers period is marked; (c) and (e) IFFT images of (b) and (d), the respective superlattices are marked; (f) The atomic modeling of the cubical precipitates, the unit cell of superlattices is marked; (g) Statistical reciprocal positions of near-1/3 (200) superlattices (red dots) and the 1/3 (200) (black crosses, non-existed) are counted, and their average values are also shown.