Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T11:36:23.690Z Has data issue: false hasContentIssue false

Electrochemical synthesis of inorganic polycrystalline electrodes with controlled architectures

Published online by Cambridge University Press:  31 January 2011

Kyoung-Shin Choi
Affiliation:
Purdue University, West Lafayette, IN 47907, USA, kchoi1@purdue.edu
Ho Seong Jang
Affiliation:
Purdue University, West Lafayette, IN 47907, USA, msekorea@purdue.edu
Colleen M. McShane
Affiliation:
Purdue University, West Lafayette, IN 47907, USA, cmmcshan@purdue.edu
Carrie G. Read
Affiliation:
Purdue University, West Lafayette, IN 47907, USA, cread@purdue.edu
Jason A. Seabold
Affiliation:
Purdue University, West Lafayette, IN 47907, USA, jseabold@purdue.edu
Get access

Abstract

Most modern electrochemical and photoelectrochemical devices (e.g., solar cells, photoelectrochemical cells, fuel cells, and batteries) are composed of polycrystalline semiconductor and metal electrodes. The shape and size of the individual crystals constituting a polycrystalline electrode as well as the overall interfacial architecture have a significant effect on the overall performance of the electrode. Therefore, a method that can precisely control electrode morphologies and provide an understanding of their effects on electrode performance is critical for producing highly efficient and cost-effective electrode materials. Electrochemical synthesis is a low-cost method that can produce a variety of materials as polycrystalline electrodes with exceptional control of their morphologies. This article reviews recently developed electrochemical synthesis strategies that produce inorganic materials with various morphological features, which have a direct impact on the material's properties. This article will serve as a good foundation for those seeking a viable electrochemical route to produce electrodes having a specifically desired morphology.

Type
Technical Feature
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mullin, J.W., Crystallization (Butterworth-Heinemann, Oxford, 2001).Google Scholar
2. Buckley, H.E., Crystal Growth (Wiley, New York, 1951).Google Scholar
3. Wulff, G.Z., Kristallographie 34, 449 (1901).Google Scholar
4. Mann, S., Angew. Chem. Int. Ed. 39, 3393 (2000).3.0.CO;2-M>CrossRefGoogle Scholar
5. Qiu, S.R., Wierzbucki, A., Salter, E.A., Zepeda, S., Orme, C.A., Hoyer, J.R., Nancollas, G.H., Cody, A.M., De Yoreo, J.J., J. Am. Chem. Soc. 127, 9036 (2005).CrossRefGoogle Scholar
6. Siegfried, M.J., Choi, K.-S., Adv. Mater. 16, 1743 (2004).CrossRefGoogle Scholar
7. Read, C.G., Steinmiller, E.M.P., Choi, K.-S., J. Am. Chem. Soc. 131, 12040 (2009).CrossRefGoogle Scholar
8. Tena-Zaera, R., Elias, J., Wang, G., Levy-Clement, C., J. Phys. Chem. C 111, 16706 (2007).CrossRefGoogle Scholar
9. Pradhan, D., Leung, K.T., Langmuir 24, 9707 (2008).CrossRefGoogle Scholar
10. Yu, R., Ren, T., Sun, K., Feng, Z., Li, G., Li, C., J. Phys. Chem. C 113, 10833 (2009).CrossRefGoogle Scholar
11. Choi, K.-S., Dalton Trans. 40, 5389 (2008).Google Scholar
12. Siegfried, M.J., Choi, K.-S., J. Am. Chem. Soc. 128, 10356 (2006).CrossRefGoogle Scholar
13. Kulp, E.A., Switzer, J.A., J. Am. Chem. Soc. 129, 15120 (2007).CrossRefGoogle Scholar
14. Kothari, H.M., Kulp, E.A., Boonsalee, S., Nikiforov, M.P., Bohannan, E.W., Poizot, P., Nakanishi, S., Switzer, J.A., Chem. Mater. 16, 4232 (2004).CrossRefGoogle Scholar
15. Meakin, P., in Fractals, Scaling and Growth Far from Equilibrium, Chirikov, B., Cvitanovic, P., Moss, F., Swinney, H., Eds. (Cambridge University Press, UK, 1998), pp. 326400.Google Scholar
16. Kuroda, T., Irisawa, T., Ookawa, A., J. Cryst. Growth 42, 41 (1977).CrossRefGoogle Scholar
17. Gu, C., Zhang, T.-Y., Langmuir 24, 12010 (2008).CrossRefGoogle Scholar
18. Fleury, V., Watters, W.A., Allam, L., Devers, T., Nature 416, 716 (2002).CrossRefGoogle Scholar
19. Qiu, R., Cha, H.G., Noh, H.B., Shim, Y.B., Zhang, X.L., Qiao, R., Zhang, D., Kim, Y.I., Pal, U., Kang, Y.S., J. Phys. Chem. C 113, 15891 (2009).CrossRefGoogle Scholar
20. Hsu, P.-C., Seol, S.-K., Lo, T.-N., Liu, C.-J., Wang, C.-L., Lin, C.-S., Hwu, Y., Chen, C.H., Chang, L.-W., Je, J.H., Margaritondoi, G., J. Electrochem. Soc. 155, D400 (2008).CrossRefGoogle Scholar
21. Aurback, D., Weissman, I., Nonaqueous Electrochemistry, Aurbach, D., Ed. (Marcel Dekker, New York, 1999).Google Scholar
22. López, C.M., Choi, K.-S., Langmuir 22, 10625 (2006).CrossRefGoogle Scholar
23. Nakanishi, S., Fukami, K., Tada, T., Nakato, Y., J. Am. Chem. Soc. 126, 9556 (2004).CrossRefGoogle Scholar
24. St-Pierre, J., Piron, D.L., J. Electrochem. Soc. 137, 2491 (1990).CrossRefGoogle Scholar
25. Fukami, K., Nakanishi, S., Tada, T., Yamasaki, H., Sakai, S.-I., Fukushima, S., Nakato, Y., J. Electrochem. Soc. 152, C493 (2004).CrossRefGoogle Scholar
26. Saliba, R., Mingotaud, C., Argoul, F., Ravaine, S., Electrochem. Commun. 4, 629 (2002).CrossRefGoogle Scholar
27. Pourbaix, M., Atlas of Electrochemical Equilibria in Aqueous Solutions, 2nd English Edition (National Association of Corrosion Engineers, Houston, 1974), pp. 384392.Google Scholar
28. Siegfried, M.J., Choi, K.-S., Angew. Chem., Int. Ed. 47, 368 (2008).CrossRefGoogle Scholar
29. McShane, C.M., Choi, K.-S., J. Am. Chem. Soc. 131, 2561 (2009).CrossRefGoogle Scholar
30. Pletcher, D., Walsh, F.C., Industrial Electrochemistry, 2nd Edition (Chapman and Hall, New York, 1990), p. 403.Google Scholar
31. Willis, M., Alkire, R., Electrochem. Solid-State Lett. 11, D94 (2008).CrossRefGoogle Scholar
32. Willis, M., Alkire, R., J. Electrochem. Soc. 156, D377 (2009).CrossRefGoogle Scholar
33. Hurst, S.J., Payne, E.K., Qin, L., Mirkin, C.A., Angew. Chem. Int. Ed. 45, 2672 (2006).CrossRefGoogle Scholar
34. Martin, C.R., Adv. Mater. 3, 457 (1991).CrossRefGoogle Scholar
35. Wang, J.-G., Tian, M.-L., Kumar, N., Mallouk, T.E., Nano Lett. 5, 1247 (2005).CrossRefGoogle Scholar
36. Taberna, P.L., Mitra, S., Poizot, P., Simon, P., Tarascon, J.-M., Nat. Mater. 5, 567 (2006).CrossRefGoogle Scholar
37. Li, Y., Meng, G.W., Zhang, L.D., Phillipp, F., Appl. Phys. Lett. 76, 2011 (2000)CrossRefGoogle Scholar
38. Takahashi, K., Limmer, S.J., Wang, Y., Cao, G., J. Phys. Chem. B 108, 9795 (2004).CrossRefGoogle Scholar
39. Sander, M.S., Prieto, A.L., Gronsky, R., Sands, T., Stacy, A.M., Adv. Mater. 14 665 (2002).3.0.CO;2-B>CrossRefGoogle Scholar
40. Routkevitch, D., Bigioni, T., Moskovits, M., Xu, J.M., J. Phys. Chem. 100, 14037 (1996).CrossRefGoogle Scholar
41. Sun, L., Searson, P.C., Chien, C.L., Appl. Phys. Lett. 74, 2803 (1999).CrossRefGoogle Scholar
42. Urade, V.N., Wei, T.-C., Tate, M.P., Kowalski, J.D., Hillhouse, H.W., Chem. Mater 19, 768 (2007).CrossRefGoogle Scholar
43. López, C.M., Choi, K.-S., Chem. Commun. 3328 (2005).CrossRefGoogle Scholar
44. Santato, C., López, C.M., Choi, K.-S., Electrochem. Commun. 9, 1519 (2007)CrossRefGoogle Scholar
45. Min, S.-K., Joo, O.-S., Jung, K.-D., Mane, R.S., Han, S.-H., Electrochem. Commun. 8, 223 (2006).CrossRefGoogle Scholar
46. Prakasam, H.E., Shankar, K., Paulose, M., Varghese, O.K., Grimes, C.A., J. Phys. Chem. C 111, 7235 (2007).CrossRefGoogle Scholar
47. Mor, G.K., Varghese, O.K., Paulose, M., Shankar, K., Grimes, C.A., Sol. Energy Mater. Sol. Cells 90, 2011 (2006).CrossRefGoogle Scholar
48. Keller, F., Hunter, M.S., Robinson, D.L., J. Electrochem. Soc. 100, 411 (1953).CrossRefGoogle Scholar
49. Rangaraju, R.R., Panday, A., Raja, K.S., Misra, M., J. Phys. D: Appl. Phys. 42, 135303 (2009).CrossRefGoogle Scholar
50. Sieber, I., Hildebrand, H., Friedrich, A., Schmuki, P., Electrochem. Commun. 7, 97 (2005).CrossRefGoogle Scholar
51. Allam, N.K., Feng, X.J., Grimes, C.A., Chem. Mater. 20, 6477 (2008).CrossRefGoogle Scholar
52. Hahn, R., Macak, J.M., Schmuki, P., Electrochem. Commun. 9, 947 (2007)CrossRefGoogle Scholar
53. Lee, W.J., Smyrl, W.H., Solid State Lett. 8, B7 (2005).CrossRefGoogle Scholar
54. Feng, X., LaTempa, T.J., Basham, J.I., Mor, G.K., Varghese, O.K., Grimes, C.A. Nano Lett. 10, 948 (2010).CrossRefGoogle Scholar
55. Mohapatra, S.K., Banerjee, S., Misra, M., Nanotechnology 19, 445607 (2008).CrossRefGoogle Scholar
56. Seabold, J.A., Shankar, K., Wilke, R.H.T., Paulose, M., Varghese, O.K., Grimes, C.A., Choi, K.-S., Chem. Mater. 20, 5266 (2008).CrossRefGoogle Scholar
57. Wang, Q., Zhu, K., Neale, N.R., Frank, A.J., Nano Lett. 9, 806 (2009)CrossRefGoogle Scholar
58. Xu, H., Wang, W., Zhu, W., J. Phys. Chem. B. 110, 13829 (2006).CrossRefGoogle Scholar
59. Sowers, K.L., Fillinger, A. J. Electrochem. Soc. 156, F80 (2009).CrossRefGoogle Scholar
60. Hochbaum, A.I., Yang, P., Chem. Rev. 527, 110 (2010).Google Scholar