Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-19T08:15:34.528Z Has data issue: false hasContentIssue false

Bridging the gap: The developmental aspects of evolution

Published online by Cambridge University Press:  17 December 2007

Eva Jablonka
Affiliation:
Cohn Institute for the History and Philosophy of Science and Ideas, Tel Aviv University, Tel Aviv 69978, Israeljablonka@post.tau.ac.il
Marion J. Lamb
Affiliation:
11 Fernwood, Clarence Road, London N22 8QE, United Kingdommarionlamb@btinternet.com

Abstract

The commentaries on Evolution in Four Dimensions reflect views ranging from total adherence to gene-centered neo-Darwinism, to the acceptance of non-genetic and Lamarckian processes in evolution. We maintain that genetic, epigenetic, behavioral, and cultural variations have all been significant, and that the developmental aspects of heredity and evolution are an important bridge that can unite seemingly conflicting research programs and different disciplines.

Type
Authors' Response
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashikawa, I. (2001) Surveying CpG methylation at 5′-CCGG in the genomes of rice cultivars. Plant Molecular Biology 45:3139.Google Scholar
Avital, E. & Jablonka, E. (2000) Animal traditions: Behavioural inheritance in evolution. Cambridge University Press.Google Scholar
Baylin, S. B. & Ohm, J. E. (2006) Epigenetic gene silencing in cancer—a mechanism for early oncogenic pathway addiction? Nature Reviews Cancer 6:107–16.Google Scholar
Belyaev, D. K. (1979) Destabilizing selection as a factor in domestication. Journal of Heredity 70:301308.Google Scholar
Bergstrom, C. T. & Lachmann, M. (2004) Shannon information and biological fitness. Proceedings of the IEEE Workshop on Information Theory, San Antonio, TX, October 24–29, 2004, pp. 5054.Google Scholar
Burdge, G. C., Slater-Jefferies, J. L., Torrens, C., Phillips, E. S., Hanson, M. A. & Lillycrop, K. A. (2007) Dietary protein restriction of pregnant rats in the F0 generation induces altered methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 generations. British Journal of Nutrition 97:435–39.Google Scholar
Casadesús, J. & Low, D. (2006) Epigenetic gene regulation in the bacterial world. Microbiology and Molecular Biology Reviews 70:830–56.Google Scholar
Cervera, M.-T., Ruiz-García, L. & Martínez-Zapater, J. (2002) Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers. Molecular Genetics and Genomics 268:543–52.Google Scholar
Chan, T. L., Yuen, S. T., Kong, C. K., Chan, Y. W., Chan, A. S. Y., Ng, W. F., Tsui, W. Y., Lo, M. W. S., Tam, W. Y., Li, V. S. W. & Leung, S. Y. (2006) Heritable germline epimutation of MSH2 in a family with hereditary nonpolyposis colorectal cancer. Nature Genetics 38:1178–83.Google Scholar
Chong, S. & Whitelaw, E. (2004) Epigenetic germline inheritance. Current Opinion in Genetics and Development 14:692–96.Google Scholar
Cullis, C. A. (2005) Mechanisms and control of rapid genomic changes in flax. Annals of Botany 95:201206.Google Scholar
Darlington, C. D. (1939) The evolution of genetic systems. Cambridge University Press.Google Scholar
Dawkins, R. (1982) The extended phenotype. Freeman/Oxford University Press.Google Scholar
Dawkins, R. (2006) The god delusion. Bantam.Google Scholar
Delage, J. & Goldsmith, M. (1912) The theories of evolution, trans. Tridon, A. (from the 1909 French edition). Palmer.Google Scholar
Dor, D. & Jablonka, E. (2000) From cultural selection to genetic selection: A framework for the evolution of language. Selection 1:3355.Google Scholar
Gabora, L. (2004) Ideas are not replicators but minds are. Biology and Philosophy 19:127–43.Google Scholar
Ginsburg, S. & Jablonka, E. (in press) The transition to experiencing. I. Limited learning and limited experiencing. II. The evolution of associative learning based on feelings. Biological Theory.Google Scholar
Gluckman, P. & Hanson, M. (2005) The fetal matrix: Evolution, development and disease. Cambridge University Press.Google Scholar
Gluckman, P. D., Hanson, M. A. & Beedle, A. S. (2007) Non-genomic but transgenerational inheritance of disease risk. BioEssays 29:145–54.Google Scholar
Grant-Downton, R. T. & Dickinson, H. G. (2005) Epigenetics and its implications for plant biology. 1. The epigenetic network in plants. Annals of Botany 96:1143–64.Google Scholar
Grant-Downton, R. T. & Dickinson, H. G. (2006) Epigenetics and its implications for plant biology. 2. The “epigenetic epiphany”: Epigenetics, evolution and beyond. Annals of Botany 97:1127.Google Scholar
Griesemer, J. (2000) The units of evolutionary transition. Selection 1:6780.Google Scholar
Hager, J. B. & Wolf, R. (2006) A maternal-offspring coadaptation theory for the evolution of genomic imprinting. PLoS Biology 4(12):e380.Google Scholar
Jablonka, E. (2002) Information: Its interpretation, its inheritance, and its sharing. Philosophy of Science 69:578605.Google Scholar
Jablonka, E. (2004a) Epigenetic epidemiology. International Journal of Epidemiology 33:929–35.Google Scholar
Jablonka, E. (2004b) From replicators to heritably varying phenotypic traits: The extended phenotype revisited. Biology and Philosophy 19:353–75.Google Scholar
Jablonka, E. (2004c) The evolution of the peculiarities of mammalian sex chromosomes: An epigenetic view. BioEssays 26:1327–32.Google Scholar
Jablonka, E. & Lamb, M. J. (1990) Lamarckism and ageing. Gerontology 36:323–32.Google Scholar
Jablonka, E. & Lamb, M. J. (1995) Epigenetic inheritance and evolution: The Lamarckian dimension. Oxford University Press.Google Scholar
Jablonka, E. & Lamb, M. J. (2005) Evolution in four dimensions: Genetic, epigenetic, behavioral, and symbolic variation in the history of life. MIT Press.Google Scholar
Jablonka, E. & Lamb, M. J. (2006a) Evolutionary epigenetics. In: Evolutionary genetics, ed. Fox, C. W. & Wolf, J. B., pp. 252–64. Oxford University Press.Google Scholar
Jablonka, E. & Lamb, M. J. (2006b) The evolution of information in the major transitions. Journal of Theoretical Biology 239:236–46.Google Scholar
Jablonka, E. & Lamb, M. J. (2007) The expanded evolutionary synthesis – a response to Godfrey-Smith, Haig, and West-Eberhard. Biology and Philosophy 22:453–72.Google Scholar
Jablonka, E., Oborny, B., Molnár, E., Kisdi, E., Hofbauer, J. & Czárán, T. (1995) The adaptive advantage of phenotypic memory in changing environments. Philosophical Transactions of the Royal Society of London B350:133–41.Google Scholar
Jaenisch, R., Hochedlinger, K., Blelloch, R., Yamada, Y., Baldwin, K. & Eggan, K. (2004) Nuclear cloning, epigenetic reprogramming, and cellular differentiation. Cold Spring Harbor Symposia on Quantitative Biology 69:1927.Google Scholar
Jirtle, R. L. & Skinner, M. K. (2007) Environmental epigenomics and disease susceptibility. Nature Reviews Genetics 8:253–62.Google Scholar
Keller, E. F. (2000) The century of the gene. Harvard University Press.Google Scholar
Knox, M. R. & Ellis, T. H. (2001) Stability and inheritance of methylation states at PstI sites in Pisum. Molecular Genetics and Genomics 265:497507.Google Scholar
Kussell, E., Kishony, R., Balaban, N. Q. & Leibler, S. (2005) Bacterial persistence: A model of survival in changing environments. Genetics 169:1807–14.Google Scholar
Kussell, E. & Leibler, S. (2005) Phenotypic diversity, population growth, and information in fluctuating environments. Science 309:2075–78.Google Scholar
Lachmann, M. & Jablonka, E. (1996) The inheritance of phenotypes: An adaptation to fluctuating environments. Journal of Theoretical Biology 181:19.Google Scholar
Lachmann, M., Sella, G. & Jablonka, E. (2000) On the advantages of information sharing. Proceedings of the Royal Society of London B: Biological Sciences 267:1287–93.Google Scholar
Lamb, M. J. (1994) Epigenetic inheritance and aging. Reviews in Clinical Gerontology 4:97105.Google Scholar
Lewis, K. (2007) Persister cells, dormancy and infectious diseases. Nature Reviews Microbiology 5:4856.Google Scholar
Liu, B. & Wendel, J. (2003) Epigenetic phenomena and the evolution of plant allopolyploids. Molecular Phylogenetics and Evolution 29:365–79.Google Scholar
Maynard Smith, J. (2000) The concept of information in biology. Philosophy of Science 67:177–94.Google Scholar
Maynard Smith, J. & Szathmáry, E. (1995) The major transitions in evolution. Freeman/Oxford University Press.Google Scholar
Mayr, E. (1982) The growth of biological thought. Belknap Press.Google Scholar
McClintock, B. (1984) The significance of responses of the genome to challenge. Science 226:792801.Google Scholar
Meaney, M. J. (2001) Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annual Review of Neuroscience 24:1161–92.Google Scholar
Morange, M. (2002) The relations between genetics and epigenetics: An historical point of view. Annals of the New York Academy of Sciences 981(1):5060.Google Scholar
Oyama, S. (1985) The ontogeny of information: Developmental systems and evolution. Cambridge University Press.Google Scholar
Pál, C. (1998) Plasticity, memory and the adaptive landscape of the genotype. Proceedings of the Royal Society of London B: Biological Sciences 265:1319–23.Google Scholar
Pogribny, P., Tryndyak, V. P., Muskhelishvili, L., Rusyn, I. & Ross, S. A. (2007) Methyl deficiency, alterations in global histone modifications, and carcinogenesis. Journal of Nutrition (Suppl.) 137:216–22.Google Scholar
Popova, N. K. (2006) From genes to aggressive behavior: The role of serotonergic system. BioEssays 28:495503.Google Scholar
Rando, O. J. & Verstrepen, K. J. (2007) Timescales of genetic and epigenetic inheritance. Cell 128:655–68.Google Scholar
Rapp, R. A. & Wendel, J. F. (2005) Epigenetics and plant evolution. New Phytologist 168:8191.Google Scholar
Rassoulzadegan, M., Grandjean, V., Gounon, P., Vincent, S., Gillot, I. & Cuzin, F. (2006) RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature 441:469–74.Google Scholar
Richards, E. J. (2006) Inherited epigenetic variation – revisiting soft inheritance. Nature Reviews Genetics 7:395401.Google Scholar
Riddle, N. C. & Richards, E. J. (2002) The control of natural variation in cytosine 5 methylation in Arabidopsis. Genetics 162:355–63.Google Scholar
Rodenhiser, D. & Mann, M. (2006) Epigenetics and human disease: Translating basic biology into clinical applications. Canadian Medical Association Journal 174:341–48.Google Scholar
Rodin, S. N., Parkhomchuk, D. V. & Riggs, A. D. (2005) Epigenetic changes and repositioning determine the evolutionary fate of duplicated genes. Biochemistry (Moscow) 70:559–67.Google Scholar
Sangster, T. A., Lindquist, S. & Queitsch, C. (2004) Under cover: Causes, effects and implications of Hsp90-mediated genetic capacitance. BioEssays 26:348–62.Google Scholar
Siegal, M. L. & Bergman, A. (2006) Canalization. In: Evolutionary genetics, ed. Fox, C. W. & Wolf, J. B., pp. 235–51. Oxford University Press.Google Scholar
Sperber, D. (1996) Explaining culture: A naturalistic approach. Blackwell.Google Scholar
Takeda, S. & Paszkowski, J. (2006) DNA methylation and epigenetic inheritance during plant gametogenesis. Chromosoma 115:2735.Google Scholar
Trut, L. N., Plyusnina, I. Z. & Oskina, I. N. (2004) An experiment on fox domestication and debatable issues of evolution of the dog. Russian Journal of Genetics 40:644–55.Google Scholar
Tuite, M. F. & Cox, B. S. (2006) The [PSI+] prion of yeast: A problem of inheritance. Methods 39:922.Google Scholar
Vastenhouw, N. L., Brunschwig, K., Okihara, K. L., Müller, F., Tijsterman, M. & Plasterk, R. H. A. (2006) Long-term gene silencing by RNAi. Nature 442:882.Google Scholar
Van Speybroeck, L.Van de Vijver, G. & De Waale, D., eds. (2002) From epigenesis to epigenetics: The genome in context. Annals of the New York Academy of Sciences, Vol. 981. [Whole volume.]Google Scholar
Walczak, A. M., Onuchic, J. N. & Wolynes, P. G. (2005) Absolute rate theories of epigenetic stability. Proceedings of the National Academy of Sciences USA 102:18926–31.Google Scholar
Wang, Y., Lin, X., Dong, B., Wang, Y. & Liu, B. (2004) DNA methylation polymorphism in a set of elite rice cultivars and its possible contribution to inter-cultivar differential gene expression. Cellular and Molecular Biology Letters 9:543–56.Google Scholar
Weaver, I. C. G., Cervoni, N., Champagne, F. A., D'Alessio, A. C., Sharma, S., Seckl, J. R., Dymov, S., Szyf, M. & Meaney, M. J. (2004) Epigenetic programming by maternal behaviour. Nature Neuroscience 7:847–54.Google Scholar
West-Eberhard, M. J. (2003) Developmental plasticity and evolution. Oxford University Press.Google Scholar
Whiten, A. & van Schaik, C. P. (2007) The evolution of animal “cultures” and social intelligence. Philosophical Transactions of the Royal Society B: Biological Sciences 362(1480):603–20.Google Scholar
Wickner, R. B., Edskes, H. K., Ross, E. D., Pierce, M. M., Baxa, U., Brachmann, A. & Shewmaker, F. (2004) Prion genetics: New rules for a new kind of gene. Annual Review of Genetics 38:681707.Google Scholar
Yoo, C. B. & Jones, P. A. (2006) Epigenetic therapy of cancer: Past, present and future. Nature Reviews Drug Discovery 5:3750.Google Scholar
Zilberman, D. & Henikoff, S. (2005) Epigenetic inheritance in Arabidopsis: Selective silence. Current Opinion in Genetics and Development 15:557–62.Google Scholar
Zordan, R. E., Galgoczy, D. J. & Johnson, A. D. (2006) Epigenetic properties of white–opaque switching in Candida albicans are based on a self-sustaining transcriptional feedback loop. Proceedings of the National Academy of Sciences USA 103:12807–12.Google Scholar
Zuckerkandl, E. & Cavalli, G. (2007) Combinatorial epigenetics, “junk DNA”, and the evolution of complex organisms. Gene 390:232–42.Google Scholar