Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-28T10:53:15.342Z Has data issue: false hasContentIssue false

Simulation of digestion in cattle fed sugarcane: model development

Published online by Cambridge University Press:  27 March 2009

J. Dijkstra
Affiliation:
Institute of Grassland and Environmental Research, North Wyke Research Station, Okehampton, Devon EX20 2SB, UK
J. France
Affiliation:
Institute of Grassland and Environmental Research, North Wyke Research Station, Okehampton, Devon EX20 2SB, UK
H. D. St. C. Neal
Affiliation:
University of Reading, Department of Agriculture, Earley Gate, Reading RG6 2 AT, UK
A. G. Assis
Affiliation:
National Dairy Cattle Research Centre, EMBRAPA, Rodovia MG 133, Km 42, 36.155–000 Coronet Pacheco, Brazil
L. J. M. Aroeira
Affiliation:
National Dairy Cattle Research Centre, EMBRAPA, Rodovia MG 133, Km 42, 36.155–000 Coronet Pacheco, Brazil
O. F. Campos
Affiliation:
National Dairy Cattle Research Centre, EMBRAPA, Rodovia MG 133, Km 42, 36.155–000 Coronet Pacheco, Brazil

Summary

A dynamic model of digestion and absorption of nutrients in cattle fed sugarcane-based diets is described. There are 11 rumen state variables, and four zero pools representing absorbed nutrients. The rumen state variables represent nitrogen, carbohydrate, long chain fatty acid, microbial and volatile fatty acid pools. The zero pools relate to absorbed amino acids, glucose, long chain fatty acids, and volatile fatty acids. The flux equations are described by mass-action and Michaelis-Menten forms. Wherever possible, data derived from trials with cattle fed sugarcane-based diets were used to parameterize the model. Sensitivity analyses revealed that stability and behaviour of the model was generally satisfactory. The model was most sensitive to changes in fractional passage and substratehydrolysis rates and to the microbial maintenance requirement. Within the limited information available for comparison, the simulations agreed with observations of fibre flows and ammonia and volatile fatty acid concentrations in rumen fluid. Duodenal non-ammonia nitrogen flow was consistently underpredicted and reasons for this underprediction are suggested.

Type
Animals
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdullah, N., Nolan, J. V., Mahyuddin, M. & Jalaludin, S. (1992). Digestion and nitrogen conservation in cattle and buffaloes given rice straw with or without molasses. Journal of Agricultural Science, Cambridge 19, 255263.CrossRefGoogle Scholar
Aroeira, L. J. M., Silveira, M. I., Lizieire, R. S., Matos, L. L. & Figueira, D. G. (1993). Rumen degradability and rate of passage of sugarcane with urea, cottonseed meal and rice meal in crossbred Holstein-Zebu steers (in Portuguese). Journal of the Brazilian Society of Animal Science 22, 552564.Google Scholar
Baldwin, R. L., Thornley, J. H. M. & Beever, D. E. (1987). Metabolism of the lactating cow. II. Digestive elements of a mechanistic model. Journal of Dairy Research 54, 107131.CrossRefGoogle ScholarPubMed
Bauchart, D., Doreau, M. & Legay-Carmier, F. (1985). Digestion and utilization of lipids and the effects of lipid supplementation on digestion in ruminants (in French). Bulletin Technique CRZV Theix, INRA 61, 6577.Google Scholar
Bibby, J. & Toutenburg, H. (1977). Prediction and Improved Estimation in Linear Models. London: John Wiley & Sons.Google Scholar
Brandt, M., Rohr, K. & Lebzien, P. (1984). Estimation of postruminally secreted protein-N in duodenal digesta of cows by means of 15N. In Proceedings of the VIth International Symposium on Amino Acids Eds Zebrowska, T., Buraczewska, L., Buraczewski, S., Kowalczyk, J. & Pastuszewska, B.), pp. 15. Warsaw: Polish Scientific Publishers.Google Scholar
Campos, J. (1975). Tables to Calculate Diets (in Portuguese). Viçosa: Federal University of Viçosa.Google Scholar
Clapperton, J. L. & Czerkawski, J. W. (1969). Methane production and soluble carbohydrates in the rumen of sheep in relation to the time of feeding and the effects of short-term intraruminal infusions of unsaturated fatty acids. British Journal of Nutrition 23, 813826.CrossRefGoogle Scholar
Coleman, G. S. & Sandford, D. C. (1979). The engulfment and digestion of mixed rumen bacteria and individual bacterial species by single and mixed species of rumen ciliate protozoa grown in vivo. Journal of Agricultural Science, Cambridge 92, 729742.CrossRefGoogle Scholar
Craig, W. M., Broderick, G. A. & Ricker, D. B. (1987). Quantitation of microorganisms associated with the particulate phase of ruminal ingesta. Journal of Nutrition 117, 5662.CrossRefGoogle ScholarPubMed
Dukstra, J. (1994). Production and absorption of volatile fatty acids in the rumen. Livestock Production Science 39, 6169.CrossRefGoogle Scholar
Dukstra, J., Neal, H. D. St. C, Beever, D. E. & France, J. (1992). Simulation of nutrient digestion, absorption and outflow in the rumen: model description. Journal of Nutrition 122, 22392256.CrossRefGoogle Scholar
Dukstra, J., Boer, H., Van Bruchem, J., Bruining, M. & Tamminga, S. (1993). Absorption of volatile fatty acids from the rumen of lactating dairy cows as influenced by volatile fatty acid concentration, pH and rumen liquid volume. British Journal of Nutrition 69, 385396.CrossRefGoogle Scholar
Dukstra, J., France, J., Assis, A. G., Neal, H. D. St. C, Ampos, O. F. & Aroeira, L. J. M. (1996). Simulation of digestion in cattle fed sugarcane: prediction of nutrient supply for milk production with locally available supplements. Journal of Agricultural Science, Cambridge 127, 247260.CrossRefGoogle Scholar
Erdman, R. A. (1988). Dietary buffering requirements of the lactating dairy cow: a review. Journal of Dairy Science 71, 32463266.CrossRefGoogle Scholar
Faichney, G. J. (1989). Mean retention time and intraruminal degradation of rumen protozoa. Proceedings of the Nutrition Society of Australia 14, 135.Google Scholar
Forsberg, C. W. & Lam, K. (1977). Use of adenosine 5'-triphosphate as an indicator of the microbiota biomass in rumen contents. Applied and Environmental Microbiology 33, 528537.CrossRefGoogle ScholarPubMed
France, J., Thornley, J. H. M. & Beever, D. E. (1982). A mathematical model of the rumen. Journal of Agricultural Science, Cambridge 99, 343353.CrossRefGoogle Scholar
France, J., Gill, M., Thornley, J. H. M. & England, P. (1987). A model of nutrient utilization and body composition in beef cattle. Animal Production 44, 371385.Google Scholar
FundaçãO Instituto Brasileiro de Geografia e Estatistica (FIBGE) (1988). Annual Statistics in Brasil (in Portuguese). Rio de Janeiro: FIBGE.Google Scholar
Garton, G. A. (1959). Lipids in relation to rumen function. Proceedings of the Nutrition Society 18, 112117.CrossRefGoogle ScholarPubMed
Hespell, R. B. & Bryant, M. P. (1979). Efficiency of rumen microbial growth: influence of some theoretical and experimental factors on YATP. Journal of Animal Science 49, 16401659.CrossRefGoogle ScholarPubMed
Hunter, R. A. & Siebert, B. D. (1980). The utilization of spear grass (Heteropogon contortus). IV. The nature and flow of digesta in cattle fed on spear grass alone and with protein or nitrogen or sulfur. Australian Journal of Agricultural Research 31, 10371047.CrossRefGoogle Scholar
Isaacson, H. R., Hinds, F. C., Bryant, M. P. & Owens, F. N. (1975). Efficiency of energy utilization by mixed rumen bacteria in continuous culture. Journal of Dairy Science 58, 16451659.CrossRefGoogle ScholarPubMed
Jenkins, T. C. (1993). Lipid metabolism in the rumen. Journal of Dairy Science 76, 38513863.CrossRefGoogle ScholarPubMed
Kennedy, P. M. & Milligan, L. P. (1980). The degradation and utilization of endogenous urea in the gastrointestinal tract of ruminants: a review. Canadian Journal of Animal Science 60, 205221.CrossRefGoogle Scholar
Kennedy, P. M., Mcsweeney, C. S., Ffoulkes, D., John, A., Schlink, A. C., Lefeuvre, R. P. & Kerr, J. D. (1992). Intake and digestion in swamp buffaloes and cattle. I. The digestion of rice straw. Journal of Agricultural Science, Cambridge 119, 227242.CrossRefGoogle Scholar
Leng, R. A. & Preston, T. R. (1976). Sugarcane for cattle production: present constraints, perspectives and research priorities. Tropical Animal Production 1, 122.Google Scholar
Leng, R. A., Nolan, J. V., Cumming, G., Edwards, S. R. & Graham, C. A. (1984). The effects of monensin on the pool size and turnover rate of protozoa in the rumen of sheep. Journal of Agricultural Science, Cambridge 102, 609613.CrossRefGoogle Scholar
Maeng, W. J., Van Nevel, C. J., Baldwin, R. L. & Morris, J. G. (1976). Rumen microbial growth rates and yields: effect of amino acids and protein. Journal of Dairy Science 59, 6879.CrossRefGoogle Scholar
Matos, N. J. M. (1991). Effect of levels of feed intake and urea on rumen kinetic parameters in cattle fed sugarcane supplemented with rice meal (in Portuguese). DSc thesis, Federal University of VicÇsa.Google Scholar
Mcdonald, P., Edwards, R. A. & Greenhalgh, J. F. D. (1988). Animal Nutrition (4th Edn). New York: Longman Scientific & Technical/John Wiley & Sons.Google Scholar
Melo, J. F., Viana, J. A. C., Moreira, H. A. & Mello, R. P. (1983). The effects of polished rice and cassava (dry root and hay) as supplementations to sugarcane + urea on the performance of dairy heifers (in Portuguese). Brazilian Archive of Veterinary Medicine and Zootechny 35, 871886.Google Scholar
Mitchell, E. L. & Gauthier, J. (1981). Advanced Continuous Simulation Language. User Guide/Reference Manual 3rd Edn. Concord, MA: Mitchell and Gauthier Associates.Google Scholar
Moore, J. H. & Christie, W. W. (1984). Digestion, absorption and transport of fats in ruminant animals. In Fats in Animal Nutrition (Ed. Wiseman, J.), pp. 123149. London: Butterworths.CrossRefGoogle Scholar
Murphy, M. R., Baldwin, R. L. & Koong, L. J. (1982). Estimation of stoichiometric parameters for rumen fermentation of roughage and concentrate diets. Journal of Animal Science 55, 411421.CrossRefGoogle ScholarPubMed
Nocek, J. E. & Tamminga, S. (1991). Site of digestion of starch in the gastrointestinal tract of dairy cows and its effect on milk yield and composition. Journal of Dairy Science 74, 35983629.CrossRefGoogle ScholarPubMed
Oliveira, W. H. (1990). Apparent digestibilities and rumen kinetics in cattle fed sugarcane with three levels of urea (in Portuguese). Msc thesis, University of Minas Gerais.Google Scholar
Owens, F. N. & Goetsch, A. L. (1986). Digesta passage and microbial protein synthesis. In Control of Digestion and Metabolism in Ruminants (Eds Milligan, L. P., Grovum, W. L. & Dobson, A.), pp. 196223. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Preston, T. R. & Leng, R. A. (1987). Matching Ruminant Production Systems with Available Resources in the Tropics and Sub-Tropics. Armidale: Penambul Books.Google Scholar
Reichl, J. R. & Baldwin, R. L. (1975). Rumen modelling: rumen input-output balance models. Journal of Dairy Science 58, 879890.CrossRefGoogle ScholarPubMed
Robinson, P. H., Tamminga, S. & Van Vuuren, A. M. (1987). Influence of declining level of feed intake and varying the proportion of starch in the concentrate on rumen ingesta quantity, composition and kinetics of ingesta turnover in dairy cows. Livestock Production Science 17, 3762.CrossRefGoogle Scholar
Rodrigues, A. A., Torres, R. A., Campos, O. F. & Aroeira, L. J. M. (1994). Urea and calcium sulfate in sugarcane diets for growing cattle (in Portuguese). Journal of the Brazilian Society of Animal Science 23, 585594.Google Scholar
Rodrigues, F. M. & Viana, J. A. C. (1986). Urea levels in a basal diet consisting of sugarcane for dairy heifers kept in confinement (in Portuguese). Brazilian Archive of Veterinary Medicine and Zootechny 38, 798804.Google Scholar
Russell, J. B. & Baldwin, R. L. (1978). Substrate preferences in rumen bacteria: evidence of catabolite regulatory mechanisms. Applied and Environmental Microbiology 36, 319329.CrossRefGoogle ScholarPubMed
Russell, J. B. & Baldwin, R. L. (1979). Comparison of maintenance energy expenditures and growth yields among several rumen bacteria grown on continuous culture. Applied and Environmental Microbiology 37, 537543.CrossRefGoogle ScholarPubMed
Russell, J. B., Sniffen, C. J. & Van Soest, P. J. (1983). Effect of carbohydrate limitation on degradation and utilization of casein by mixed rumen bacteria. Journal of Dairy Science 66, 763775.CrossRefGoogle ScholarPubMed
SAS Institute (1989). SAS User's Guide: Statistics, Version 6 Edition. Cary, NC: SAS Institute.Google Scholar
Siddons, R. C., Beever, D. E. & Nolan, J. V. (1982). A comparison of methods for the estimation of microbial nitrogen in duodenal digesta of sheep. British Journal of Nutrition 48, 377389.CrossRefGoogle ScholarPubMed
Siddons, R. C., Nolan, J. V., Beever, D. E. & Macrae, J. C. (1985). Nitrogen digestion and metabolism in sheep consuming diets containing contrasting forms and levels of N. British Journal of Nutrition 54, 175187.CrossRefGoogle ScholarPubMed
Storm, E., Brown, D. S. & Ørskov, E. R. (1983). The nutritive value of rumen micro-organisms in ruminants. 3. The digestion of microbial amino and nucleic acids in, and losses of endogenous nitrogen from, the small intestine of sheep. British Journal of Nutrition 50, 479485.CrossRefGoogle ScholarPubMed
Sutton, J. D. (1985). Digestion and absorption of energy substrates in the lactating cow. Journal of Dairy Science 68, 33763393.CrossRefGoogle Scholar
Tamminga, S. (1989). Forage digestion as influenced by feeding fats. In Advances in Dairy Technology, Vol. 1 (Ed. Kennelly, J. J.), pp. 920. Edmonton: University of Alberta.Google Scholar
Tamminga, S., van Vuuren, A. M., van der Koelen, C. J., Ketelaar, R. S. & P. L., van der Togt (1990). Ruminal behaviour of structural carbohydrates, non-structural carbohydrates and crude protein from concentrate ingredients in dairy cows. Netherlands Journal of Agricultural Science 38, 513526.CrossRefGoogle Scholar
Tamminga, S., van Straalen, W. M., Subnel, A. P. J., Meijer, R. G. M., Steg, A., Wever, C. J. G. & Blok, M. C. (1994). The Dutch protein evaluation system: the DVE/OEB-system. Livestock Production Science 40, 139155.CrossRefGoogle Scholar
Valadares Filho, S. C., Silva, J. F. C., Leão, M. I., Euclydes, R. F., Valadarez, R. F. D. & Castro, A. C. G. (1990). In situ degradability of dry matter and crude protein of some feeds by lactating dairy cows (in Portuguese). Journal of the Brazilian Society of Animal Sciences 19, 512522.Google Scholar
van Bruchem, J., Bongers, L. J. G. M., Lammerswlenhoven, S. C. W., Bangma, G. A. & van Adrichem, P. W. M. (1989). Apparent and true digestibility of protein and amino acids in the small intestine of sheep as related to the duodenal passage of protein and non-protein dry matter. Livestock Production Science 23, 317327.CrossRefGoogle Scholar
van Nevel, C. J. & Demeyer, D. I. (1988). Manipulation of rumen fermentation. In The Rumen Microbial Ecosystem (Ed. Hobson, P. N.), pp. 387444. London: Elsevier Science Publishers.Google Scholar
van Soest, P. J. (1982). Nutritional Ecology of the Ruminant. Corvallis: O & B Books.Google Scholar
van Straalen, W. M., Dooper, F. H. M., Antoniewicz, A. M., Kosmala, I. & van Vuuren, A. M. (1993). Intestinal digestibility in dairy cows of protein from grass and clover measured with mobile nylon bag and other methods. Journal of Dairy Science 76, 29702981.CrossRefGoogle ScholarPubMed
Wright, D. E. & Hungate, R. E. (1967). Amino acid concentrations in rumen fluid. Applied Microbiology 15, 148151.CrossRefGoogle ScholarPubMed