Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-29T13:12:29.527Z Has data issue: false hasContentIssue false

A computer-controlled color vision test for children based on the Cambridge Colour Test

Published online by Cambridge University Press:  03 July 2008

PAULO R. K. GOULART*
Affiliation:
Instituto de Filosofia, Universidade Federal do Pará, Belém, Brazil
MARCIO L. BANDEIRA
Affiliation:
Instituto de Psicologia, Universidade de São Paulo, São Paulo, Brazil
DANIELA TSUBOTA
Affiliation:
Instituto de Psicologia, Universidade de São Paulo, São Paulo, Brazil
NESTOR N. OIWA
Affiliation:
Instituto de Psicologia, Universidade de São Paulo, São Paulo, Brazil
MARCELO F. COSTA
Affiliation:
Instituto de Psicologia, Universidade de São Paulo, São Paulo, Brazil Núcleo de Neurociências e Comportamento, Universidade de São Paulo, São Paulo, Brazil
DORA F. VENTURA
Affiliation:
Instituto de Psicologia, Universidade de São Paulo, São Paulo, Brazil Núcleo de Neurociências e Comportamento, Universidade de São Paulo, São Paulo, Brazil
*
Address correspondence and reprint requests to: Paulo Roney Kilpp Goulart, Av. Conselheiro Furtado, 1776, apto 206, 66040-100; Belém, PA, Brasil. E-mail: goulartprk@gmail.com

Abstract

The present study aimed at providing conditions for the assessment of color discrimination in children using a modified version of the Cambridge Colour Test (CCT, Cambridge Research Systems Ltd., Rochester, UK). Since the task of indicating the gap of the Landolt C used in that test proved counterintuitive and/or difficult for young children to understand, we changed the target stimulus to a patch of color approximately the size of the Landolt C gap (about 7° of visual angle at 50 cm from the monitor). The modifications were performed for the CCT Trivector test which measures color discrimination for the protan, deutan and tritan confusion lines. Experiment 1 sought to evaluate the correspondence between the CCT and the child-friendly adaptation with adult subjects (n = 29) with normal color vision. Results showed good agreement between the two test versions. Experiment 2 tested the child-friendly software with children 2 to 7 years old (n = 25) using operant training techniques for establishing and maintaining the subjects' performance. Color discrimination thresholds were progressively lower as age increased within the age range tested (2 to 30 years old), and the data—including those obtained for children—fell within the range of thresholds previously obtained for adults with the CCT. The protan and deutan thresholds were consistently lower than tritan thresholds, a pattern repeatedly observed in adults tested with the CCT. The results demonstrate that the test is fit for assessment of color discrimination in young children and may be a useful tool for the establishment of color vision thresholds during development.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barbur, J.L., Birch, J. & Harlow, A.J. (1993). Colour vision testing using spatiotemporal luminance masking. In Colour Vision Deficiencies XI, ed. Drum, B., pp. 417426. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Bland, J.M. & Altman, D.G. (1987). Statistical methods for assessing agreement between two methods of clinical measurement. Biochimica Clinica 11, 399404.Google Scholar
Bland, J.M. & Altman, D.G. (1999). Measuring agreement in method comparison studies. Statistical Methods in Medical Research 8, 135160.CrossRefGoogle ScholarPubMed
Castelo-Branco, M., Faria, P., Forjaz, V., Kozak, L.R. & Azevedo, H. (2004). Simultaneous comparison of relative damage to chromatic pathways in ocular hypertension and glaucoma: Correlation with clinical measures. Ophthalomology and Visual Science 45, 499505.Google ScholarPubMed
Costa, M.F., Oliveira, A.G.F., Feitosa-Santana, C., Zatz, M. & Ventura, D.F. (2007). Red-green color vision impairment in Duchenne muscular dystrophy. American Journal of Human Genetics 80, 10641075.CrossRefGoogle ScholarPubMed
Costa, M.F., Ventura, D.F., Perazzolo, F., Murakoshi, M. & Silveira, L.C.L. (2006). Absence of binocular summation, eye dominance, and learning effects in color discrimination. Visual Neuroscience 23, 461469.CrossRefGoogle ScholarPubMed
Davies, N.P & Morland, A.B. (2004). Macular pigments: Their characteristics and putative role. Progress in Retinal and Eye Research 23, 533559.CrossRefGoogle ScholarPubMed
Knoblauch, K., Vital-Durand, F. & Barbur, J.L. (2001). Variation of chromatic sensitivity across the life span. Vision Research 41, 2336.CrossRefGoogle ScholarPubMed
Mancuso, K., Neitz, M. & Neitz, J. (2006). An adaptation of the Cambridge Colour Test for use with animals. Visual Neuroscience 23, 695701.CrossRefGoogle ScholarPubMed
Mollon, J.D. & Reffin, J.P. (1989). A computer-controlled colour vision test that combines the principles of Chibret and Stilling. Journal of Physiology 414, 5P.Google Scholar
Mollon, J.D. & Regan, J.P. (2000). Handbook of the Cambridge Colour Test. London, UK: Cambridge Research Systems (http://www.crsltd.com).Google Scholar
Pokorny, J., Smith, V.C. & Lutze, M. (1987). Aging of the human lens. Applied Optics 26, 14371440.CrossRefGoogle ScholarPubMed
Regan, B.C., Freudenthaler, N., Kolle, R., Mollon, J.D. & Paulus, W. (1998). Colour discrimination thresholds in Parkinson's disease: Results obtained with a rapid computer-controlled colour vision test. Vision Research 38, 34273431.CrossRefGoogle ScholarPubMed
Silva, M.F., Faria, P., Regateiro, F.S., Forjaz, V., Januário, C., Freire, A. & Castelo-Branco, M. (2005). Independent patterns of damage within magno-, parvo- and koniocellular pathways in Parkinson's disease. Brain 128, 22602271.CrossRefGoogle ScholarPubMed
Simunovic, M.P., Votruba, M., Regan, B.C. & Mollon, J.D. (1998). Colour discrimination ellipses in patients with dominant optic atrophy. Vision Research 38, 34133419.CrossRefGoogle ScholarPubMed
Smithson, H.E., Sumner, P. & Mollon, J.D. (2003). How to find a tritan line. In Normal and Defective Colour Vision, ed. Mollon, J.D., Pokorny, J. & Knoblauch, K., pp. 327334. Oxford, UK: Oxford University Press.Google Scholar
Ventura, D.F., Costa, M.T.V., Costa, M.F., Berezovsky, A., Salomao, S.R., Simões, A.L., Lago, M., Pereira, L.H.M.C., Souza, J.M. & Silveira, L.C.L. (2004). Multifocal and full-field electroretinogram changes associated with color vision loss in mercury vapor exposure. Visual Neuroscience 21, 421429.CrossRefGoogle ScholarPubMed
Ventura, D.F., Costa, M.F., Gualtieri, M., Nishi, M., Bernicki, M., Bonci, D. & Souza, J.M. (2003a). Early vision loss in diabetic patients assessed by the Cambridge Colour Test. In Normal and Defective Colour Vision, ed. Mollon, J.D., Pokorny, J. & Knoblauch, K., pp. 391399. Oxford, England: Oxford University Press.Google Scholar
Ventura, D.F., Gualtieri, M., Oliveira, A.G.F., Costa, M.F., Quiros, P., Sadun, F., de Negri, A.M., Salomao, S.R., Berezovsky, A., Sherman, J., Sadun, A.A. & Carelli, V. (2007). Male prevalence of acquired color vision defects in asymptomatic carriers of Leber's hereditary optic neuropathy. Investigative Ophthalmology and Visual Science 48, 23622370.CrossRefGoogle ScholarPubMed
Ventura, D.F., Rodrigues, A.R., Moura, A.A., Vargas, A.C., Costa, M.F., de Souza, J.M. & Silveira, L.L. (2002a). Color discrimination measured by the Cambridge Colour Vision Test (CCVT) in children and adults. Investigative Ophthalmology & Vision Science 43, E-Abstract 3796.Google Scholar
Ventura, D.F., Silveira, L.C.L., Nishi, M., Costa, M.F., Gualtieri, M., Santos, R.M.A., Pinto, C.T., Moura, A.L.A., Rodrigues, A.R., Sakurada, C., Sauma, M.F.L.C. & Souza, J.M. (2002b). Color vision loss in patients treated with chloroquine. Arquivos Brasileiros de Oftalmologia 66, 0915.CrossRefGoogle Scholar
Ventura, D.F., Silveira, L.C.L, Rodrigues, A.R., Gualtieri, M., Souza, J.M., Bonci, D. & Costa, M.F. (2003b). Preliminary norms for the Cambridge Colour Test. In Normal and Defective Colour Vision, ed. Mollon, J.D., Pokorny, J. & Knoblauch, K., pp. 327334. Oxford, UK: Oxford University Press.Google Scholar
Ventura, D.F., Simões, A.L., Tomaz, S., Costa, M.F., Lago, M., Costa, M.T.V., Pereira, L.H.M.C., Souza, J.M., Faria, M.A.M. & Silveira, L.C.L. (2005). Color vision and contrast sensitivity losses of mercury intoxicated industry workers in Brazil. Environmental Toxicology and Pharmacology 19, 523529.CrossRefGoogle ScholarPubMed