Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-17T20:23:34.323Z Has data issue: false hasContentIssue false

Disturbances of micronutrient and antioxidant status in diabetes

Published online by Cambridge University Press:  28 February 2007

J. J. Strain
Affiliation:
Human Nutrition Research Group, University of Ulster, Coleraine BT52 1SA, Northern Ireland
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Meeting Report
Copyright
Copyright © The Nutrition Society 1991

References

Asayama, K., Hayashibe, H., Dobashi, K., Niitsu, T., Miyao, A. & Kato, K. 1989. Antioxidant enzyme status and lipid peroxidation in various tissues of diabetic and starved rats. Diabetes Research 12, 8591.Google ScholarPubMed
Asayama, K., Kooy, N. W. & Burr, I. M. 1986. Effect of vitamin E deficiency and selenium deficiency on insulin secretory reserve and free radical scavenging systems in islets: Decrease of islet manganosuperoxide dismutase. Journal of Laboratory and Clinical Medicine 107, 459464.Google Scholar
Balevska, P. S., Russanov, E. M. & Kasabova, T. A. 1981. Studies of lipid peroxidation in rat liver by copper deficiency. International Journal of Biochemistry 13, 489493.CrossRefGoogle ScholarPubMed
Baly, D. L., Keen, C. L., Curry, D. L. & Hurley, L. S. 1985. Effects of manganese deficiency on carbohydrate metabolism. In Trace Elements in Man and Animals (TEMA 5), pp. 254258 [Mills, C. F., Bremmer, I. and Cliesters, K. J., editors]. Slough: Commonwealth Agricultural Bureaux.Google Scholar
Baynes, J. W. 1991. Role of oxidative stress in development of complications in diabetes. Diabetes 40, 405412.CrossRefGoogle ScholarPubMed
Behrens, W. A. & Madere, R. 1991. Vitamin C and vitamin E status in the spontaneously diabetic BB rat before the onset of diabetes. Metabolism 40, 7276.CrossRefGoogle ScholarPubMed
Behrens, W. A., Scott, F. W., Madere, R. & Trick, K. D. 1984. Increased plasma and tissue levels of vitamin E in the spontaneously diabetic BB rat. Life Sciences 35, 199206.CrossRefGoogle ScholarPubMed
Behrens, W. A., Scott, F. W., Madere, R., Trick, K. & Hanna, K. (1986). Effect of dietary vitamin E on the vitamin E status in the BB rat during development and after the onset of diabetes. Annals of Nutrition & Metabolism 30, 157165.CrossRefGoogle ScholarPubMed
Biemond, P., Swaak, A. J. G., Eijk, H. G. & Foster, J. F. 1988. Superoxide dependent iron release from ferritin in inflammatory diseases. Free Radical Biology & Medicine 4, 185198.CrossRefGoogle ScholarPubMed
Bond, J. S., Faile, M. L. & Unger, D. F. 1983. Elevated manganese concentration and arginase activity in livers of streptozotocin-induced diabetic rats. Journal of Biological Chemistry 258, 80048009.Google Scholar
Bray, T. M. & Bettger, W. J. 1990. The physiological role of zinc as an antioxidant. Free Radical Biology & Medicine 8, 281291.CrossRefGoogle ScholarPubMed
Cand, F. & Verdetti, J. 1989. Superoxide dismutase, glutathione peroxidase, catalase and lipid peroxidation in the major organs of the ageing rats. Free Radical Biology & Medicine 7, 5963.CrossRefGoogle Scholar
Ceriello, A., Guigliano, D., Quatraro, A., Donzella, C., Dipalo, G. & Lefebure, P. J. (1991). Vitamin E reduction of protein glycosylation in diabetes. Diabetes Care 14, 6872.CrossRefGoogle ScholarPubMed
Chen, M. S., Hutchinson, M. L., Pecoraro, R. E., Lee, W. Y. & Labbe, R. F. (1983). Hyperglycemia induced intracellular depletion of ascorbic acid in human mononuclear leukocytes. Diabetes 32, 10781081.CrossRefGoogle ScholarPubMed
Ciriolo, M. R., Desideri, A., Paci, M. & Rotilio, R. (1990). Reconstitution of Cu, Zn-superoxide dismutase by the Cu (1)-glutathione complex. Journal of Biological Chemistry 265, 1103011034.CrossRefGoogle Scholar
Cohen, A. M., Teitelbaum, A., Miller, E., Ben-Tor, V., Hirt, R. & Fields, M. (1982). The effect of copper deficiency on carbohydrate metabolism in rats. Israel Journal of Medical Science 18, 840844.Google Scholar
Cole, H. S., Lopez, R. & Cooperman, J. M. (1976). Riboflavin deficiency in children with diabetes mellitus. Acta Diabetologica Latina 13, 2529.CrossRefGoogle ScholarPubMed
Collette, C., Pares-Herbute, N., Monnier, L. & Cartny, E. (1988). Platelet function in type I diabetes: Effects of supplementation with large doses of vitamin E. American Journal of Clinical Nutrition 47, 256261.Google Scholar
Costagliola, C., Juliano, G., Menzione, M., Nesti, A., Simonelli, F. & Rinaldi, E. (1988). Systemic human diseases as oxidative risk factors in cataractogenesis. 1. Diabetes. Ophthalmic Research 20, 308316.CrossRefGoogle Scholar
Cunningham, J. J. (1988). Altered vitamin C transport in diabetes mellitus. Medical Hypotheses 26, 263265.Google Scholar
Cunningham, J. J., Ellis, S. L., McVeigh, K. L., Levine, R. E. & Calles-Escandon, J. (1991) . Reduced mononuclear leukocyte ascorbic acid content in adults with insulin-dependent diabetes mellitus consuming adequate dietary vitamin C. Metabolism 40, 146149.Google Scholar
DiSilvestro, R. A. (1990). Influence of dietary copper, copper injections and inflammations on rat serum ceruloplasmin activity levels. Nutrition Research 10, 355358.Google Scholar
Dohi, T., Kawamura, K., Morita, K., Okamoto, H. & Tsujirnoto, A. (1988). Alterations of the plasma selenium concentrations and the activities of tissue peroxide metabolism enzymes in streptozotocin-induced diabetic rats. Hormone and Metabolic Research 20, 671675.CrossRefGoogle ScholarPubMed
Donaldson, D. L., Smith, C. C. & Kok, E. (1987). Effects of obesity and diabetes on tissue zinc and copper concentrations in the Zucker rat. Nutrition Research 7, 393399.Google Scholar
Donaldson, D. L., Smith, C. C., Walker, M. S. & Rennert, O. M. (1988). Tissue zinc and copper levels in diabetic C57BL/KsJ(db/db) mice fed a zinc-deficient diet: Lack of evidence for specific depletion of tissue zinc stores. Journal of Nutrition 118, 15021508.CrossRefGoogle ScholarPubMed
Drash, A. L., Rudert, W. A., Borquaye, S., Wang, R. & Lilberman, I. (1988). Effect of probucol and development of diabetes mellitus in BB rats. American Journal of Cardiology 62, 27B30B.CrossRefGoogle ScholarPubMed
Dubick, M. A., Yu, G. S. M. & Majumdar, A. P. N. (1989). Morphological and biochemical changes in the pancreas of the copper-deficient female rat. Journal of Nutrition 119, 11651172.CrossRefGoogle ScholarPubMed
Eriksson, U. J. (1984). Diabetes in pregnancy: Retarded fetal growth congenital malformation and feto–maternal concentrations of zinc, copper and manganese in the rat. Journal of Nutrition 114, 477484.CrossRefGoogle ScholarPubMed
Everson, G. J. & Shrader, R. E. (1968). Abnormal glucose tolerance in manganese deficient guinea pigs. Journal of Nutrition 94, 8994.CrossRefGoogle ScholarPubMed
Failla, M. L. & Kiser, R. A. (1981). Altered tissue content and cytosol distribution of trace metals in experimental diabetes. Journal of Nutrition 111, 19001909.CrossRefGoogle ScholarPubMed
Failla, M. J. & Micahelis, D. M. (1984). Decreased tissue concentrations of essential trace metals in the obese rat. Federation Proceedings 43, 667 Abstr.Google Scholar
Fields, M., Ferretti, R. J., Smith, J. C. & Reiser, S. (1984 a). Impairment of glucose tolerance in copper-deficient rats: Dependency on the type of carbohydrate. Journal of Nutrition 114, 393397.CrossRefGoogle ScholarPubMed
Fields, M., Ferretti, R. J., Smith, J. C. & Reiser, S. (1984 b). Interaction between dietary carbohydrate and copper nutriture on lipid peroxidation in rat tissues. Biological Trace Element Research 6, 379391.CrossRefGoogle ScholarPubMed
Fields, M., Lewis, C. G. & Beal, T. (1989). Accumulation of sorbitol in copper deficiency: Dependency on gender and type of dietary carbohydrate. Metabolism 38, 371375.Google Scholar
Fields, M., Lewis, C. G., Lure, M. D., Burns, W. A. & Antholine, W. E. (1991). The severity of copper deficiency can be ameliorated by deferoxamine. Metabolism 40, 105109.CrossRefGoogle ScholarPubMed
Fricker, J., Le Moel, G. & Apfelbaum, M. (1990). Obesity and iron status in menstruating women. American Journal of Clinical Nutrition 52, 863866.Google Scholar
Gebre-Medhin, M., Ewald, U., Platin, L.-O. & Tuvemo, T. (1984). Elevated serum selenium in diabetic children. Acta Paediatrica Scandinavica 73, 109114.Google Scholar
Gebre-Medhin, M., Ewald, U., Platin, L.-O., Tuvemo, T. & Vessby, B. (1982). Selenium and lipoprotein metabolism in diabetogenic children. In Proceedings of the 11th Congress of the International Diabetes Federation, p. 206 [Alberti, K. G. G. M., Ogada, T., Alouch, J. A. A. and Mngola, E. N., editors]. Amsterdam: Excerpta Medica.Google Scholar
Georgieff, M. K., Landon, M. B., Mills, M. M., Hedlund, B. E., Fassen, A. E., Schmidt, R. L., Ophoven, J. J. & Widness, J. A. (1990). Abnormal iron distribution in infants of diabetic mothers: Spectrum and maternal antecedents. Journal of Pediatrics 117, 455461.CrossRefGoogle ScholarPubMed
Gilbert, V., Zebrowski, E. & Chan, A. (1983). Differential effects of megavitamin E on prostacyclin and thromboxane synthesis in streptozotocin-induced diabetic rats. Hormone and Metabolic Research 15, 320325.CrossRefGoogle ScholarPubMed
Gillery, P., Monboisse, J.-C., Maquart, F.-X. & Borel, J.-P. (1989). Does oxygen free radical increased formation explain long term complications of diabetes mellitus? Medical Hypotheses 29, 4750.Google Scholar
Gisinger, C., Jeremy, J., Speiser, P., Mikhailidis, D., Dandona, P. & Schernthaner, G. (1988). Effect of vitamin E supplementation on platelet thromboxane A2 production in type I diabetic patients. Diabetes 37, 12601264.Google Scholar
Gisinger, C., Watanabe, J. & Colwell, J. A. (1990). Vitamin E and platelet eicosanoids in diabetes in diabetes mellitus. Prostaglandins, Leukotrines and Essential Fatty Acids 40, 169176.Google Scholar
Godin, D. V., Wohaieb, S. A., Garnett, M. E. & Goumeniouk, A. D. (1988). Antioxidant enzyme alterations in experimental and clinical diabetes. Molecular and Cellular Biochemistry 84, 22CrossRefGoogle ScholarPubMed
Grankvist, K., Marklund, S. L. & Taljedal, I.-B. (1981). CuZn-superoxide dismutase, Mn-superoxide dismutase, catalase and glutathione peroxidase in pancreatic islets and other tissues in the mouse. Biochemical Journal 199, 393398.Google Scholar
Halliwell, B. (1987). Oxidants and human disease – some new concepts. FASEB Journal 1, 358364.Google Scholar
Hamalainen, M. M. & Makinen, K. K. (1989). Polyol–mineral interactions in the diet of the rat with special reference to the stabilities of polyol–metal complexes. Nutrition Research 9, 801811.CrossRefGoogle Scholar
Hellerstrom, C., Anderson, A., Sandler, S. & Swenne, I. (1986). Mechanisms of destruction and repair of the pancreatic B cell. Transplantation Proceedings 18, 15091512.Google Scholar
Higuichi, Y. (1982). Lipid peroxides and α-tocopherol in rat streptozotocin-induced diabetes mellitus. Acta Medica Okayama 36, 165175.Google Scholar
Hunt, J. V. & Wolff, S. P. (1990). Is glucose the sole source of tissue browning in diabetes mellitus? FEBS Letters 269, 258260.CrossRefGoogle ScholarPubMed
Jain, S. K., Levine, S. L., Duett, J. & Hollier, B. (1990). Elevated lipid peroxidation levels in red blood cells of strepozotocin-treated diabeties rats. Metabolism 39, 971975.Google Scholar
Jain, S. K., McVie, R., Duett, J. & Herbst, J. J. (1989). Erythrocyte membrane lipid peroxidation and glycosylated hemoglobin diabetes. Diabetes 38, 15391543.Google Scholar
Johnson, W. T. & Evans, G. W. (1984). Effects of the interrelationship between dietary protein and minerals on tissue content of trace metals in streptozotocin-diabetic rats. Journal of Nutrition 114, 180190.CrossRefGoogle ScholarPubMed
Johnson, W. T. & Saari, J. T. (1989). Dietary supplementation with t-butylhydroquinone reduces cardiac hypertrophy and anemia associated with copper deficiency in rats. Nutrition Research 9, 13551362.Google Scholar
Jones, A. F., Winkles, J. W., Jennings, P. E., Florkowski, C. M., Lunec, J. & Barnett, A. A. (1988). Serum antioxidant activity in diabetes mellitus. Diaberes Research 7, 8992.Google Scholar
Jongkind, J. F., Verkerk, A. & Baggen, R. G. A. (1989). Glutathione metabolism of human vascular endothelial cells under peroxidative stress. Free Radical Biology & Medicine 7, 507512.CrossRefGoogle ScholarPubMed
Kaji, H., Kurasaki, M., Ito, K., Saito, T., Saito, K., Niioka, T., Kojima, Y., Ohsaki, Y., Ide, H. & Tsuji, M. (1985). Increased lipoperoxide value and glutathione peroxidase activity in blood plasma of type 2 (non-insulin-dependent) diabetic women. Klinisehl Wochenschrift 63, 765768.Google Scholar
Karpen, C., Cataland, S., O'Dorisio, T. & Panganamala, R. (1984). Interrelation of platelet vitamin E and thromboxane synthesis in type 1 diabetes mellitus. Diabetes 33, 239243.Google Scholar
Karpen, C. W., Pritchard, K. A., Arnold, J. H., Cornwell, D. G. & Panganamala, R. V. (1982). Restoration of prostacyclin/thromboxane A2 balance in the diabetic rat. Influence of dietary vitamin E. Diabetes 31, 947951.Google Scholar
Keen, C. L., Baly, D. L., Tamai, K. T. & Lonnerdal, B. (1985). Influence of manganese on glucose metabolism. In Trace Elements in Man and Animals (TEMA 5). pp. 258261 [Mills, C. F., Bremner, I. and Chesters, K. J., editors]. Slough: Commonwealth Agricultural Bureaux.Google Scholar
Keil, H. L. & Nelson, V. E. (1934). The role of copper in carbohydrate metabolism. Journal of Biological Chemistry 106, 343350.CrossRefGoogle Scholar
Kennedy, L. & Baynes, Y. W. (1984). Non-enzymatic glycosylation and the chronic complications of diabetes: An overview. Diabetologia 26, 9398.Google Scholar
Kennedy, M. L., Failla, M. L. & Smith, J. O. (1986). Influence of genetic obesity on tissue concentrations of zinc, copper, manganese and iron in mice. Journal of Nutrition 116, 14321441.Google Scholar
Kinlaw, W. B., Levine, A. S., Morley, J. E., Silvis, S. E. & McClain, C. J. (1983). Abnormal zinc metabolism in type II diabetes mellitus. American Journal of Medicine 75, 273277.Google Scholar
Klevay, L. M., Canfield, W. K., Gallagher, S. K., Henriksen, L. K., Lukaski, H. C., Bolonchuk, W., Johnson, L. A. K., Milne, D. B. & Sandstead, H. H. (1986). Decreased glucose tolerance in two men during experinmental copper depletion. Nutrition Reports International 33, 371382.Google Scholar
Lawrence, R. A. & Jenkinson, S. G. (1987). Effects of copper deficiency on carbon tetrachloride induced lipid peroxidation. Journal of Laboratory and Clinical Medicine 109, 134140.Google Scholar
Levine, A. S., McClain, C. J., Handwerger, B. S., Brown, D. M. & Morley, J. E. (1983). Tissue zinc status of genetically diabetic and streptozotocin-induced diabetic mice. American Journal of Clinical Nutrition 37, 382386.CrossRefGoogle ScholarPubMed
Loven, D. P., Oberley, L. W., Schedl, H. P. & Wilson, H. D. (1983). Superoxide dismutase activities in jejunum and kidney of diabetic rats treated with insulin and glutathione. In Oxy-Radicals and Their Scavenger Systems, vol. 2. pp. 1721 [Greenwald, R. A. and Cohen, G., editors]. New York: Elsevier.Google Scholar
Loven, D. P., Schedl, H. P., Oberley, L. W., Wilson, H. D., Bruch|L. & Niehaus, C. N. (1982). Superoxide dismutase activity in the intestinal mucosa of the streptozotocin-diabetic rat. Endocrinology 111, 737742.Google Scholar
Loven, D. P., Schedl, H., Wilson, H., Daabees, T. T., Stegink, L. D., Diekus, M. & Oberley, L. (1986). Effect of insulin and oral glutathione on glutathione levels and superoxide dismutase activities in organs of rats with streptozotocin-induced diabetes. Diabetes 35, 503507.CrossRefGoogle Scholar
Lynch, S. M. & Strain, J. J. (1989). Increased hepatic lipid peroxidation with methionine toxicity in the rat. Free Radical Research Communications 5, 221226.CrossRefGoogle ScholarPubMed
McDermott, B. M., Strain, J. J. & Flatt, P. R. (1991). Effects of copper deficiency and induction of streptozotocin (STZ)-diabetes on trace elemenl mineral status in the rat. Proceeding of the Nutrition Society (In the Press).Google Scholar
McLennan, S., Yue, D. K., Fisher, E., Caprogreco, C., Heffernan, S., Ross, G. R. & Turtle, J. R. (1988). Deficiency of ascorbic acid in experimental diabetes: relationship with collagen and polyol pathway abnormalities. Diabetes 37, 359361.Google Scholar
Malaisse, W. J., Malaisse-Lagal, F., Senor, A. & Pipeleers, D. G. (l982). Determinants of the selective toxicity of alloxan to the pancreatic β-cell. Proceedings of the National Academy of Sciences USA 79, 927930.Google Scholar
Matkovies, B., Varga, Sz. I., Szabo, L. & Witas, H. (1982). The effect of diabetes on the activities of the peroxide metabolism enzymes. Hormone and Metabolic Research 14, 7779.CrossRefGoogle Scholar
May, J. M. & Contoreggi, C. S. (1982). The mechanism of the insulin-like effects of ionic zinc. Journal of Biological Chemistry 257, 43624368.Google Scholar
Merkel, P. A., Simonson, D. C., Amiel, S. A., Plewe|G., Sherwin, R. S.. Pearson, H. A. & Tamborlane, W. V. (1988). Insulin resistance and hyperinsulinemia in patients with thalassemia major treated by hypertransfusion. New England Journal of Medicine 318, 809814.Google Scholar
Mertz, W. (1982). Trace minerals and atherosclerosis. Federation Proceedings 41, 28072812.Google ScholarPubMed
Micozzi, M. S., Albanes, D. & Stevens, R. G. (1989). Relation of body size and composition to clinical biochemical and hematologic indices in US men and women. American Journal of Clinical Nutrition 50, 12761281.Google Scholar
Mooradian, A. D. & Morley, J. E. (1987). Micronutrient status in diabetes mellitus. American Journal of Clinical Nutrition 45, 877895.Google Scholar
Mullarkey, C. J., Edelstein, D. & Brownlee, M. (1990). Free radical generation by early glycation products: A mechanism for accelerated atherogenesis in diabetes. Biochemical and Biophysical Research Communications 173, 932939.Google Scholar
Murakami, K., Kondo, T., Ohtsuka, Y., Fujiwara, Y., Shimada, M. & Kawakami, Y. (1989). Impairment of glutathione metabolism in erythrocytes from patients with diabetes mellitus. Metabolism 38, 753758.CrossRefGoogle ScholarPubMed
Murray, M. & Zaluzny, L. (1989). Comparative effects of genetic obesity and streptozotocin-diabetes on rat liver cytosolic glutathione-S-transferase activities. Nutrition Research 9, 11511160.Google Scholar
Niki, E. (1987). Interaction of ascorbate and α-tocopherol. Annals of New York Academy of Sciences 498, 186199.CrossRefGoogle ScholarPubMed
Niki, E. (1991). Vitamin C as an antioxidant. In Selected Vitamins, Minerals and Functional Consequences of Maternal Malnutrition. World Review of Nutrition & Dietetics, vol. 64, pp. 130 [Simopoulos, A. P., editor]. Basel: Karger.Google Scholar
Niki, E., Yamamoto, Y., Takahashi, M., Yamamoto, K., Yamamoto, Y., Komuro, E., Miki, M., Yasuda, H. & Mimo, M. (1988). Free radical-mediated damage of blood and its inhibition by antioxidants. Vitamins, Kyoto 62, 200.Google Scholar
Nomikos, I. N., Prowse, S. J., Carotenuto, P. & Lafferty, K. J. (1986). Combined treatment with nicotinamide and desferrioxamine prevents islet allograft destruction in NOD mice. Diabetes 35, 13021304.CrossRefGoogle ScholarPubMed
Oberley, L. W. (1988). Free radicals and diabetes. Free Radical Biology & Medicine 5, 113124.Google Scholar
Okamoto, H. (1983). Insulin biosynthesis under physiological and pathological conditions. Gunma Symposia on Endocrinology, vol. 20, pp. 2137. Tokyo: Center for Academic Publications.Google Scholar
Padh, H., Subramoniam, A. & Aleo, J. J. (1985). Glucose inhibits cellular ascorbic acid uptake by fibroblasts in vitro. Cell Biology International Reports 9, 531538.Google Scholar
Paynter, D. I. (1980). The role of dietary copper, manganese, selenium and vitamin E in lipid peroxidation in tissues of the rat. Biological Trace Element Research 2, 121135.Google Scholar
Pecoraro, R. E. & Chen, M. S. (1987). Ascorbic acid metabolism in diabetes mellitus. Annals of New York Academy of Sciences 498, 248258.Google Scholar
Phelps, G., Chapman, I., Hall, P., Braund, W. & Mackinnon, M. (1989). Prevalence of genetic haemo-chromatosis among diabetic patients. Lancet ii, 233234.Google Scholar
Powell, L. W. (1985). Haemochromatosis and related iron storage diseases. In Liver and Biliary Disease, pp. 936982 [Wright, R., Millward-Sadler, G. H., Alberti, K. G. M. M. and Karran, S., editors]. London: Balliere-Tindall.Google Scholar
Saari, J. T., Dickerson, F. D. & Habib, M. P. (1990 a). Ethane production in copper deficient rats. Proceedings of the Society for Experimental Biology and Medicine 195, 3033.CrossRefGoogle ScholarPubMed
Saari, J. T., Reeves, P. G., Noodevier, B., Hall, C. B. & Lukaski, H. C. (1990 b). Cardiovascular but not renal effects of copper deficiency are inhibited by dimethyl sulfoxide. Nutrition Research 10, 467477.Google Scholar
Sarji, K. E., Kleinfelder, J., Brewington, P., Gonzalez, J., Hempling, H. & Colwell, J. A. (1979). Decreased platelet vitamin C in diabetes mellitus: possible role in hyperaggregation. Thrombosis Research 15, 639650.Google Scholar
Sato, Y., Hotta, N., Sakamoto, N., Matsuoka, S., Ohiski, N. & Yagi, K. (1979). Lipid peroxide level in plasma of diabetic patients. Biochemical Medicine 21, 104107.CrossRefGoogle ScholarPubMed
Schorah, C. J., Bishop, N., Wales, J. K., Hansbro, P. M. & Habibzadeh, N. (1988). Blood vitamin C concentrations in patients with diabetes mellitus. International Journal of Vitamin & Nutrition Research 58, 312318.Google Scholar
Shrader, R. E. & Everson, G. J. (1968). Pancreatic pathology in manganese-deficient guinea pigs. Journal of Nutrition 94, 209218.Google Scholar
Sinclair, A. J., Girling, A. J., Gray, L., Le Guen, C., Lunec, J. & Barnett, A. H. (1991). Distributed handling of ascorbic acid in diabetic patients with and without microangiopathy during high dose ascorbate supplementation. Diabetologia 34, 171175.Google Scholar
Sjogren, A., Edvinsson, L., Floren, C.-H. & Abdulla, M. (1986). Zinc and copper in striated muscle and body fluids from subjects with diabetes mellitus Type 1. Nutrition Research 6, 147154.Google Scholar
Slonim, A. E., Surber, M. L., Page, D. L., Sharp, R. A. & Burr, I. M. (1983). Modification of chemically induced diabetes in rat by vitamin E. Journal of Clinical Investigation 71, 12821288.CrossRefGoogle ScholarPubMed
Sorenson, J. R. J. (1989). Copper complexes offer a physiological approach to treatment of chronic diseases. In Progress in Medicinal Chemistry, vol. 26, pp. 437568 [Ellis, G. P. and West, G. B., editors]. New York: Elsevier.Google Scholar
Strain, J. J., Hannigan, B. M. & McKenna, P. G. (1991). The pathophysiology of oxidant damage. Journal of Biomedical Sciences 2, 1924.Google Scholar
Strain, J. J. & Lynch, S. M. (1990). Excess dietary methionine decreases indices of copper status in the rat. Annals of Nutrition & Metabolism 43, 9397.Google Scholar
Stremmel, W., Niederau, C., Berger, M., Kley, H.-K., Kruskemper, H.-L. & Strohmeyer, G. (1987). Abnormalities in estrogen, androgen, and insulin metabolism in idiopathic hemochromatosis. Annals of New York Academy of Sciences 498, 209223.Google Scholar
Taniguchi, N., Arai, K. & Kinoshita, N. (1989). Glycation of copper/zinc superoxide dismutase and its inactivation: identification of glycated sites. Methods in Enzymology 48, 570581.Google Scholar
Taylor, C. G., Bettger, W. J. & Bray, T. M. (1988). Effects of dietary zinc or copper deficiency on the primary free radical defense system in rats. Journal of Nutrition 118, 613621.Google Scholar
Uriu-Hare, J. Y., Stern, J. S. & Keen, C. L. (1988). The effect of diabetes on the molecular localization of maternal and fetal zinc and copper metalloprotein in the rat. Biological Trace Element Research 18, 7179.CrossRefGoogle ScholarPubMed
Uriu-Hare, J. Y., Stern, J. S., Reaven, G. M. & Keen, C. L. (1985). The effect of maternal diabetes on trace element status and fetal development in the rat. Diabetes 34, 10311040.Google Scholar
Uzel, N., Sivas, A., Uysal, M. & Oz, H. (1987). Erythrocyte lipid peroxidation and gluathione peroxidase activities in patients with diabetes mellitus. Hormonal Metabolism Research 19, 8990.Google Scholar
Vandewoude, M. G., van Gaal, L. F., Vandewoude, M. F. & De Leeuw, I. H. (1987). Vitamin E status in normocholesterolemic and hypercholesterolemic diabetic patients. Acta Diabetologica Latina 24, 133139.Google Scholar
Vinson, J. A., Staretez, M. E., Bose, P., Kassm, H. M. & Basalyga, B. S. (1989). In vitro and in vivo reduction of erythrocyte sorbitol by ascorbic acid. Diabetes 38, 10361041.Google Scholar
Wachnik, A., Biro, G., Gergely, A., Gaal, O. & Antal, M. (1989). Heaptic lipid peroxidation in copper deficient rats. Nutrition Reports International 40, 23272333.Google Scholar
Watanabe, J., Umeda, F., Wakasugi, H. & Ibayashi, H. (1984). Effect of vitamin E on platelet aggregation in diabetes mellitus. Thrombosis & Haemostasis 51, 313316.Google Scholar
Wohaieb, S. A. & Godin, D. V. (1987). Starvation-related alterations in free radical tissue defense mechanisms in rats. Diabetes 36, 169173.Google Scholar
Yeh, L.-A. & Ashton, M. A. (1990). The increase in lipid peroxidation rat lens can be reversed by oral sorbinil. Metabolism 39, 619622.Google Scholar
Yew, M. S. (1983). Effect of streptozotocin diabetes on tissue ascorbic acid and dehydroascorbic acid. Hormone and Metabolic Research 15, 158.Google Scholar
Yue, D. K., McLennan, S., Fisher, E., Heffernan, S., Capogreco, C., Ross, G. R. & Turtle, J. R. (1989). Ascorbic acid metabolism and the polyol pathway in diabetes. Diabetes 38, 257261.CrossRefGoogle ScholarPubMed
Yue, D. K., McLennan, S., McGill, M., Fisher, E., Heffernan, S., Capogreco, C. & Turtle, J. R. (1990). Abnormalities of ascorbic acid metabolism and diabetic control: Differences between diabetic patients and diabetic rats. Diabetes Research and Clinical Practice 9, 239244.Google Scholar
Zebrowski, E. J. & Bhatnagar, P. K. (1979). Urinary excretion pattern of ascorbic acid in streptozotocin diabetic and insulin treated rats. Pharmacological Research Communications 11, 95103.Google Scholar