Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-27T14:09:06.076Z Has data issue: false hasContentIssue false

Human Bioavailability of Vitamins

Members of EC Flair Concerted Action No. 10: ‘Measurement of micronutrient apsorption and status’†

Published online by Cambridge University Press:  14 December 2007

C. J. Bates
Affiliation:
MRC Dunn Nutrition Unit, Milton Road, Cambridge CB4 1XJ, UK
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © The Nutrition Society 1994

References

REFERENCES

Abad, A. R. & Gregory, J. F. (1987). Determination of folate bioavailability with a rat bioassay. Journal of Nutrition 117, 866873.Google Scholar
Akiyama, T., Selhub, J. & Rosenberg, I. H. (1982). FMN phosphatase and FAD pyrophosphatase in rat intestinal brush borders: role in intestinal absorption of dietary riboflavin. Journal of Nutrition 112, 263268.Google Scholar
Allison, P. M., Mummah-Schendel, L. L., Kindberg, C. G., Harms, C. S., Bang, N. U. & Suttie, J. W. (1987). Effects of a vitamin K-deficient diet and antibiotics in normal human volunteers. Journal of Laboratory and Clinical Medicine 110, 180188.Google Scholar
Aw, T. Y., Jones, D. P. & McCormick, D. B. (1983). Uptake of riboflavin by isolated rat liver cells. Journal of Nutrition 113, 12491254.CrossRefGoogle ScholarPubMed
Babu, S. & Srikantia, S. G. (1976). Availability of folates from some foods. American Journal of Clinical Nutrition 29, 376379.CrossRefGoogle ScholarPubMed
Baessler, K.-H., Gruehn, E., Loew, D. & Pietrzik, K. (1992). Vitamin-Lexikon, pp. 154173. Stuttgart: Gustav Fischer Verlag.Google Scholar
Baker, E. M., Hodges, R. E., Hood, J., Sauberlich, H. E. & March, S. C. (1969). Metabolism of ascorbic-1-14C acid in experimental human scurvy. American Journal of Clinical Nutrition 22, 549558.Google Scholar
Baker, H. & Frank, O. (1976). Absorption, utilization and clinical effects of allithiamins compared to water-soluble vitamins. Journal of Nutritional Science and Vitaminology 22, 6366.Google Scholar
Barua, A. B., Batres, R. O. & Olson, J. A. (1989). Characterization of retinyl β-glucuronide in human blood. American Journal of Clinical Nutrition 50, 370374.CrossRefGoogle ScholarPubMed
Basilico, V., Ferrari, G., Rindi, G. & D'Andrea, G. (1979). Thiamine intestinal transport and phosphorylation: a study in vitro of potential inhibitors of small intestinal thiamine-pyrophosphokinase using a crude enzymatic preparation. Archives Internationales de Physiologie et de Biochimie 87, 981995.Google Scholar
Basu, T. K. (1982). Vitamin C-aspirin interactions. In Vitamin C: New Clinical Applications in Immunology, Lipid Metabolism and Cancer (International Journal of Vitamin and Nutrition Research, Suppl. 23) 8390 [Hanck, A., editor].Google Scholar
Batchelor, A. J. & Compston, J. E. (1983). Reduced plasma half-life of radio-labelled 25-hydroxyvitamin D3 in subjects receiving a high-fibre diet. British Journal of Nutrition 49, 213216.CrossRefGoogle ScholarPubMed
Bauernfeind, J. (1980). Tocopherols in foods. In Vitamin E: A Comprehensive Treatise, pp. 99167. [Machlin, L. J., editor]. New York: Deckker.Google Scholar
Bean, W. B. & Hodges, R. E. (1954). Pantothenic acid deficiency induced in human subjects. Proceedings of the Society for Experimental Biology and Medicine 86, 693698.Google Scholar
Bechgaard, H. & Jespersen, S. (1977). Gastrointestinal absorption of niacin in humans. Journal of Pharmaceutical Science 66, 871872.CrossRefGoogle ScholarPubMed
Bender, D. A. & Bender, A. E. (1986). Niacin and tryptophan metabolism: the biochemical basis of niacin requirements and recommendations. Nutrition Abstracts and Reviews A 56, 695719.Google Scholar
Bendich, A. & Langseth, L. (1989). Safety of vitamin A. American Journal of Clinical Nutrition 49, 358371.Google Scholar
Berger, E., Long, E. & Semenza, G. (1972). The sodium activation of biotin absorption in hamster small intestine in vitro. Biochimica et Biophysica Acta 255, 873887.Google Scholar
Bergsten, P., Amitai, G., Kehrl, J., Dhariwal, K. R., Klein, H. G. & Levine, M. (1990). Millimolar concentrations of ascorbic acid in purified human mononuclear leukocytes. Depletion and reaccumulation. Journal of Biological Chemistry 265, 25842587.CrossRefGoogle ScholarPubMed
Bianchi, J., Wilson, F. A. & Rose, R. C. (1986). Dehydroascorbic acid and ascorbic acid transport systems in the guinea pig ileum. American Journal of Physiology 250, G461–468.Google ScholarPubMed
Bitsch, R. & Schramm, W. (1992). Free and bound vitamin B6 derivatives in plant foods. In Chemical Reactions in Foods. 2. (FECS Event No. 174), pp. 285290.Google Scholar
Bjørneboe, A., Bjørneboe, G-E. A., Bodd, E., Hagen, B. F., Kveseth, N. & Drevon, C. A. (1986). Transport and distribution of α-tocopherol in lymph, serum and liver cells in rats. Biochimica et Biophysica Acta 889, 310315.CrossRefGoogle ScholarPubMed
Bjørneboe, A., Bjørneboe, G-E. A. & Drevon, C. A. (1990). Absorption, transport and distribution of vitamin E. Journal of Nutrition 120, 233242.Google Scholar
Bjornsson, T. D., Meffin, P. J., Swezey, S. E. & Blaschke, T. F. (1979). Effects of clofibrate and warfarin alone and in combination on the disposition of vitamin K1. Journal of Pharmacology & Experimental Therapeutics 210, 322326.Google ScholarPubMed
Bjornsson, T. D., Meffin, P. J., Swezey, S. E. & Blaschke, T. F. (1980). Disposition and turnover of vitamin K in man. In Vitamin K Metabolism and Vitamin K-dependent Proteins, pp. 328332 [Suttie, J. W., editor]. Baltimore, Md: University Park.Google Scholar
Blanchard, J. (1991). Effects of gender on vitamin C pharmacokinetics in man. Journal of the American College of Nutrition 10, 453459.CrossRefGoogle ScholarPubMed
Blanchard, J., Conrad, K. A., Mead, R. A. & Garry, P. J. (1990). Vitamin C disposition in young and elderly men. American Journal of Clinical Nutrition 51, 837845.CrossRefGoogle Scholar
Blomstrand, R. & Forsgren, L. (1968). Vitamin K1-3H in man. Its intestinal absorption and transport in the thoracic duct lymph. Internationale Zeitschift für Vitaminforschung 38, 4564.Google ScholarPubMed
Boland, R. L. (1986). Plants as a source of vitamin D3 metabolites. Nutrition Reviews 44, 18.CrossRefGoogle ScholarPubMed
Bonjour, J. P. (1977). Biotin in man's nutrition and therapy—a review. International Journal for Vitamin and Nutrition Research 47, 107118.Google ScholarPubMed
Bonjour, J. P. (1984). Biotin. In Handbook of Vitamins, Nutritional, Biochemical and Clinical Aspects, pp. 403435 [Machlin, L. J., editor]. New York: Dekker.Google Scholar
Bowman, B. B., McCormick, D. B. & Rosenberg, I. H. (1989). Epithelial transport of water-soluble vitamins. Annual Review of Nutrition 9, 187199.CrossRefGoogle ScholarPubMed
Brody, T., Shane, B. & Stokstad, E. L. R. (1984). Folic acid. In Handbook of Vitamins, Nutritional, Biochemical and Clinical Aspects, pp. 460491 [Machlin, L. J., editor]. New York: Dekker.Google Scholar
Brown, E. D., Micozzi, M. S., Craft, N. E., Bieri, J. G., Beecher, G., Edwards, B. K., Rose, A, Taylor, P. R. & Smith, J. C. (1989). Plasma carotenoids in normal men after a single ingestion of vegetables or purified β-carotene. American Journal of Clinical Nutrition 49, 12581265.Google Scholar
Burton, G. W. (1989). Antioxidant action of carotenoids. Journal of Nutrition 119, 109111.Google Scholar
Burton, G. W., Ingold, K. U., Foster, D. O., Cheng, S. C., Webb, A., Hughes, L. & Lusztyk, E. (1988). Comparison of free α-tocopherol and α-tocopheryl acetate as sources of vitamin E in rats and humans. Lipids 23, 834840.CrossRefGoogle ScholarPubMed
Butterworth, C. E., Newman, A. J. & Krumdieck, C. L. (1974). Tropical sprue: a consideration of possible etiologic mechanism with emphasis on pteroyl polyglutamate metabolism. Transactions of the American Clinical and Climatological Association 86, 1122.Google Scholar
Canton, M. C. & Cremin, F. M. (1990). The effect of dietary zinc depletion and repletion on rats: Zn concentration in various tissues and activity of pancreatic γ-glutamyl hydrolase (EC 3.4.22.12) as indices of Zn status. British Journal of Nutrition 64, 201209.CrossRefGoogle ScholarPubMed
Carter, E. G. A. & Carpenter, K. J. (1982). The bioavailability for humans of bound niacin from wheat bran. American Journal of Clinical Nutrition 36, 855861.Google Scholar
Choi, J.-L. & Rose, R. C. (1989). Transport and metabolism of ascorbic acid in human placenta. American Journal of Physiology 257, C110–113.Google Scholar
Clements, M. R., Davies, M., Fraser, D. R., Lumb, G. A., Mawer, E. B. & Adams, P. H. (1987). Metabolic inactivation of vitamin D is enhanced in primary hyperparathyroidism. Clinical Science 73, 659664.CrossRefGoogle ScholarPubMed
Clifford, A., Jones, A. D. & Bills, N. D. (1990). Bioavailability of folates in selected foods incorporated into amino acid-based diets fed to rats. Journal of Nutrition 120, 16401647.Google Scholar
Combs, G. F. (1992). Thiamin. In The Vitamins: Fundamental Aspects in Nutrition and Health, pp. 253268. San Diego, CA: Academic Press.Google Scholar
Coursin, D. B. (1954). Convulsive seizures in infants with pyridoxine-deficient diet. Journal of the American Medical Association 154, 406408.Google Scholar
Cowan, M. J. (1984). Biotin responsive metabolic disorders in early childhood. In Recent Vitamin Research, pp. 223 [Briggs, M. H., editor]. Ohio: CRC Press.Google Scholar
Cowan, M. J., Wara, D. W., Packman, S., Amman, A. J., Yoshino, M., Sweetman, L. & Nyhan, W. (1979). Multiple biotin-dependent carboxylase deficiencies associated with defects in T-cell and B-cell immunity. Lancet 2, 115118.Google Scholar
Craft, N. E. & Soares, J. H. (1992). Relative solubility, stability, and absorptivity of lutein and β-carotene in organic solvents. Journal of Agricultural and Food Chemistry 40, 431434.Google Scholar
Dagnelie, P. C., Vergote, F. J. V. R. A., van Staveren, W. A., van den Berg, H., Dingjan, P. G. & Hautvast, J. G. A. J. (1990). High prevalence of rickets in infants on macrobiotic diets. American Journal of Clinical Nutrition 51, 202208.Google Scholar
Dancis, J., Lehanka, J. & Levitz, M. (1985). Transfer of riboflavin by the perfused human placenta. Pediatric Research 19, 11431146.Google Scholar
Daniel, H., Wille, U. & Rehner, G. (1983). In vitro kinetics of the intestinal transport of riboflavin in rats. Journal of Nutrition 113, 636643.Google Scholar
Davies, H. E. F., Davies, J. E. W., Hughes, R. E. & Jones, E. (1984). Studies on the absorption of L-xyloascorbic acid (vitamin C) in young and elderly subjects. Human Nutrition: Clinical Nutrition 38C, 463471.Google Scholar
Davies, M. K., Gregory, M. E. & Henry, K. M. (1959). The effect of heat on the vitamin B6 of milk. II. A comparison of biological and microbiological tests of evaporated milk. Journal of Dairy Research 26, 215220.CrossRefGoogle Scholar
Davis, R. E. & Icke, G. C. (1983). Clinical chemistry of thiamin. Advances in Clinical Chemistry 23, 93140.Google Scholar
DeLuca, H. F. (1988). The vitamin D story: a collaborative effort of basic science and clinical medicine. FASEB Journal 2, 224236.CrossRefGoogle Scholar
Deutsche Gesellschaft für Ernährung (1988). Erganzungsband zum Ernährungsbericht 1988. Frankfurt: DGE.Google Scholar
Drevon, C. A. (1991). Absorption, transport and metabolism of vitamin E. Free Radical Research Communications 14, 229246.CrossRefGoogle ScholarPubMed
Dutta, P., Pinto, J. & Rivlin, R. (1985). Antimalarial effects of riboflavin deficiency. Lancet 2, 10401043.Google Scholar
Evans, W. B. & Wollaeger, E. E. (1966). Incidence and severity of nutritional deficiency states in chronic exocrine pancreatic insufficiency: comparison with non-tropical sprue. American Journal of Digestive Diseases 11, 594606.Google Scholar
FAO/WHO. (1967). Requirements of vitamin A, thiamine, riboflavine and niacin, pp. 271276. Rome: FAO (FAO Nutrition Meetings Report Series no. 41; WHO Technical Report Series no. 362).Google Scholar
FAO/WHO (1988). Requirements of vitamin A, iron, folate and vitamin B12, pp. 1718, 29-30. Rome: FAO (FAO Food and Nutrition Series no. 23).Google Scholar
Ferland, G., Sadowski, J. A. & O'Brien, M. E. (1993). Dietary induced subclinical vitamin K deficiency in normal human subjects. Journal of Clinical Investigation 91, 17611768.Google Scholar
Food and Nutrition Board (1989). Recommended Dietary Allowances, 10th Edn, pp. 169173. Washington, DC: National Academy of Sciences.Google Scholar
Ford, J. E., Salter, D. N. & Scott, K. J. (1969). The folate-binding protein in milk. Journal of Dairy Research 36, 435446.CrossRefGoogle Scholar
Foss, Z. M. S. (1981). Thesis, University of Nebraska, Lincoln, Nebraska, USA.Google Scholar
Fraser, D. R. (1983). The physiological economy of vitamin D. Lancet 1, 969972.CrossRefGoogle ScholarPubMed
Friedrich, W. (1987). Handbuch der Vitamine, pp. 305308. Munich: Urban&Schwarzenberg.Google Scholar
Fukui, E., Kurohara, H., Kageyu, A., Kurosaki, Y., Nakayama, T. & Kimura, T. (1989). Enhancing effect of medium-chain tryglycerides on intestinal absorption of d-α-tocopherol acetate from lecithin-dispersed preparations in the rat. Journal of Pharmacobio-Dynamics 12, 8086.Google Scholar
Gallo-Torres, H. E. (1980). Absorption, transport and metabolism, In Vitamin E: a Comprehensive Treatise, pp. 170267 [Machlin, L. J., editor]. New York: Dekker.Google Scholar
Gascon-Barré, M. (1986). Is there any physiological significance to the enterohepatic circulation of vitamin D sterols. Journal of the American College of Nutrition 5, 317324.Google Scholar
Ghitis, J. (1967). The folate binding in milk. American Journal of Clinical Nutrition 20, 14.Google Scholar
Gilbert, J. A. & Gregory, J. F. (1992). Pyridoxine-5'-β-D-glucoside affects the metabolic utilization of pyridoxine in rats. Journal of Nutrition 122, 10291035.CrossRefGoogle ScholarPubMed
Goodman, D. S., Blomstrand, R., Werner, B., Huang, H. S. & Shiratori, T. (1966). The intestinal absorption and metabolism of vitamin A and β-carotene in man. Journal of Clinical Investigation 45, 16151623.Google Scholar
Goodman, D. S. & Huang, H. S. (1965). Biosynthesis of vitamin A with rat intestinal enzymes. Science 149, 879880.Google Scholar
Gravel, R. A., Lam, K. F., Mahuran, D. & Kronis, A. (1980). Purification of human liver propionyl-CoA carboxylase by carbon tetrachloride extraction and monomeric avidin affinity chromatography. Archives of Biochemistry and Biophysics 201, 669673.CrossRefGoogle ScholarPubMed
Greer, F. R., Mummah-Schendel, L. L., Marshall, S. & Suttie, J. W. (1988). Vitamin K1 (phylloquinone) and vitamin K2 (menaquinone) status in newborns during the first week of life. Pediatrics 81, 137140.Google Scholar
Gregory, J. F. (1980). Effect of ε-pyridoxyllysine bound to dietary protein on the vitamin B6 status of rats. Journal of Nutrition 110, 9951005.Google Scholar
Gregory, J. F., Bhandari, S. D., Bailey, L. B., Toth, J. P., Baumgartner, T. G. & Cerda, J. J. (1991 a). Relative bioavailability of deuterium-labelled monoglutamyl and hexaglutamyl folates in human subjects. American Journal of Clinical Nutrition 53, 736740.Google Scholar
Gregory, J. F. & Ink, S. L. (1987). Identification and quantification of pyridoxine-β-glucoside as a major form of vitamin B6 in plant-derived foods. Journal of Agricultural and Food Chemistry 35, 7682.CrossRefGoogle Scholar
Gregory, J. F. & Kirk, J. R. (1977). Interaction of pyridoxal and pyridoxal phosphate with peptides in a model food system during thermal processing. Journal of Food Science 42, 15541557, 1561.Google Scholar
Gregory, J. F., Trumbo, P. R., Bailey, L. B., Toth, J. P., Baumgartner, T. G. & Cerda, J. J. (1991 b). Bioavailability of pyridoxine-5-β-D-glucoside determined in humans by stable-isotope methods. Journal of Nutrition 121, 177186.Google Scholar
Gronowska-Senger, A. & Wolf, G. (1970). Effect of dietary protein on the enzyme from rat and human intestine which converts β-carotene to retinal. Journal of Nutrition 100, 300308.Google Scholar
Gubler, C. J. (1991). Thiamin. In Handbook of Vitamins, Nutritional, Biochemical and Clinical Aspects, pp. 233281 [Machlin, L. J. editor]. New York: Dekker.Google Scholar
Guillaumont, M., Sann, L., Leclerq, M., Dostalova, L., Vignal, B. & Frederich, A. (1993). Changes in hepatic vitamin K1 levels after prophylactic administration to the newborn. Journal of Pediatric Gastroenterology and Nutrition 16, 1014.Google Scholar
Halstead, C. (1990). Intestinal absorption of dietary folates. In Folic Acid Metabolism in Health and Disease, pp. 2345 [Picciano, M. F., Stokstad, E. L. R. & Gregory, J. F., editors] New York: Wiley-Liss.Google Scholar
Hansen, C., Leklem, J., Hardin, K. & Miller, L. (1991). Vitamin B6 status of women with constant protein intake and four levels of vitamin B6. FASEB Journal 5, 556A.Google Scholar
Hathcock, J. N. (1985). Quantitative evaluation of vitamin safety. Pharmacy Times May, 104113.Google Scholar
Heinrich, H. C. & Gabbe, E. E. (1990). Experimental basis of oral and parenteral therapy with cyano- or aqua-cobalamin. Biomedicine and Physiology of Vitamin B12. London: Children's Medical Charity.Google Scholar
Heinrich, H. C. & Wolfsteller, E. (1966). [High dosage oral vitamin B12 therapy. Experimental basis and practical application.] MedizinischeKlinik 61, 756763.Google Scholar
Heldenberg, D., Tenenbaum, G. & Weisman, Y. (1992). Effect of iron on serum 25-hydroxyvitamin D and 24,25-dihydroxyvitamin D concentrations. American Journal of Clinical Nutrition 56, 533536.Google Scholar
Henderson, C. T., Mobarhan, S., Bowen, P., Stacewicz-Sapuntzakis, M., Langenberg, P., Kiani, R., Lucchesi, D. & Sugerman, S. (1989). Normal serum response to oral beta-carotene in humans. Journal of the American College of Nutrition 8, 625635.Google Scholar
Henderson, L. M. (1983). Niacin. Annual Review of Nutrition 3, 289307.CrossRefGoogle ScholarPubMed
Herbert, V. (1988). Vitamin B12: plant sources, requirements, and assay. American Journal of Clinical Nutrition 48, 852858.Google Scholar
Herzlich, B. & Herbert, V. (1984). The role of the pancreas in cobalamin (vitamin B12) absorption. American Journal of Gastroenterology 79, 489493.Google ScholarPubMed
Heymann, W. (1936). Absorption of carotene. American Journal of Diseases of Children 51 273283.Google Scholar
Hodges, R. E., Ohlson, M. A. & Bean, W. B. (1958). Pantothenic acid deficiency in man. Journal of Clinical Investigation 37, 16421657.CrossRefGoogle ScholarPubMed
Hollander, D. E. (1973). Vitamin K1 absorption by everted intestinal sacs of the rat. American Journal of Physiology 225, 360364.Google Scholar
Hollander, D. E. (1981). Intestinal absorption of vitamins A, E, D, and K. Journal of Laboratory and Clinical Medicine 97, 449462.Google Scholar
Hollander, D. E. & Dadufalza, V. (1989). Lymphatic and portal absorption of vitamin E in aging rats. Digestive Diseases and Sciences 34, 768772.Google Scholar
Hollander, D. E., Rim, E. & Ruble, P. E. (1977). Vitamin K2 colonic and ileal in vivo absorption: bile, fatty acids, and pH effects on transport. American Journal of Physiology 233, E124–129.Google Scholar
Hollander, D. E. & Ruble, P. E. (1978). β-Carotene intestinal absorption: bile, fatty acid, pH, and flow rate effects on transport. American Journal of Physiology 235, E686E691.Google Scholar
Hollis, B. W., Roos, B. A., Draper, H. H. & Lambert, P. W. (1981 a). Vitamin D and its metabolites in human and bovine milk. Journal of Nutrition 111, 12401248.Google Scholar
Hollis, B. W., Roos, B. A., Draper, H. H. & Lambert, P. W. (1981 b). Occurrence of vitamin D sulfate in human milk whey. Vitamin D and its metabolites in human and bovine milk. Journal of Nutrition 111, 384390.Google Scholar
Holmberg, I., Aksnes, L., Berlin, T., Lindback, B., Zemgals, J. & Lindeke, B. (1990). Absorption of a pharmacological dose of vitamin D3 from two different lipid vehicles in man: comparison of peanut oil and a medium chain triglyceride. Biopharmaceutics and Drug Deposition 11, 807815.Google Scholar
Hoppner, K. & Lampi, B. (1986). Bioavailability of food folacin as determined by rat liver bioassay. Nutrition Reports International 34, 489494.Google Scholar
Hornig, D. (1975). Distribution of ascorbic acid, metabolites and analogues in man and animals. Annals of the New York Academy of Sciences 258, 103118.Google Scholar
Hornig, D. (1981). Metabolism and requirements of ascorbic acid in man. South African Medical Journal 60, 818823.Google ScholarPubMed
Hornig, D., Vuilleumier, J-P. & Hartmann, D. (1980). Absorption of large, single, oral intakes of ascorbic acid. International Journal for Vitamin and Nutrition Research 50, 309314.Google Scholar
Horst, R. L., Goff, J. P. & Reinhardt, T. A. (1990). Advancing age results in reduction of intestinal and bone 1,25-dihydroxyvitamin D receptor. Endocrinology 126, 10531057.CrossRefGoogle Scholar
Horwitt, M. K., Harper, A. E. & Henderson, L. M. (1981). Niacin-tryptophan relationships for evaluating niacin equivalents. American Journal of Clinical Nutrition 34, 423427.Google Scholar
Howard, L., Wagner, C. & Schenker, S. (1974). Malabsorption of thiamin in folate-deficient rats. Journal of Nutrition 104, 10241032.CrossRefGoogle ScholarPubMed
Hoyumpa, A. M. (1982). Characterization of normal intestinal thiamin transport in animals and man. Annals of the New York Academy of Sciences 378, 337343.Google Scholar
Hoyumpa, A. M., Middleton, H. M., Wilson, F. A. & Schenker, S. (1975). Thiamin transport across the rat intestine. I. Normal characteristics. Gastroenterology 68, 12181227.Google Scholar
Hoyumpa, A. M., Strickland, R., Sheehan, J. J., Yarborough, G. & Nichols, S. (1982). Dual system of intestinal thiamine transport in humans. Journal of Laboratory and Clinical Medicine 99, 701708.Google Scholar
Hume, E. M. & Krebs, H. A. (1949). Vitamin A Requirements of Human Adults (Special Report Series no. 264). London: Medical Research Council.Google Scholar
Ingold, K. U., Burton, G. W., Foster, D. O. & Hughes, L. (1990). Further studies of a new vitamin E analogue more active than α-tocopherol in the rat curative myopathy bioassay. FEBS Letters 267, 6365.Google Scholar
Ingold, K. U., Burton, G. W., Foster, D. O., Hughes, L., Lindsay, D. A. & Webb, A. (1987). Biokinetics of and discrimination between dietary RRR- and SRR-α-tocopherols in the male rat. Lipids 22, 163172.Google Scholar
James, D. R., Owen, G., Campbell, I. A. & Goodchild, M. C. (1992). Vitamin A absorption in cystic fibrosis: risk of hypervitaminosis A. Gut 33, 707710.CrossRefGoogle ScholarPubMed
Jensen, C. D., Howes, T. W., Spiller, G. A., Pattison, T. S., Whittam, J. H. & Scala, J. (1987). Observations on the effects of ingesting cis- and trans-beta-carotene isomers on human serum concentrations. Nutrition Reports International 35, 413442.Google Scholar
Johnson, E. J. & Russell, R. M. (1992). Distribution of orally administered β-carotene among lipoproteins in healthy men. American Journal of Clinical Nutrition 56, 128135.Google Scholar
Jolly, D. W., Craig, C. & Nelson, T. E. (1977). Estrogen and prothrombin synthesis; effect of estrogen on absorption of vitamin K. American Journal of Physiology 232, H12–17.Google Scholar
Jusko, W. J. & Levy, G. (1975). Absorption, protein binding and elimination of riboflavin. In Riboflavin, pp. 99152 [Rivlin, R. S., editor]. New York: Plenum Press.Google Scholar
Kabir, H., Leklem, J. E. & Miller, L. T. (1983). Relationship of the glycosylated vitamin B6 content of foods to vitamin B6 bioavailability in humans. Nutrition Reports International 28, 709716.Google Scholar
Kahlon, T. S., Chow, F. I., Hoefer, J. L. & Betschart, A. A. (1986). Bioavailability of vitamins A and E as influenced by wheat bran and bran particle size. Cereal Chemistry 63, 490493.Google Scholar
Kallner, A., Hartmann, D. & Hornig, D. (1977). On the absorption of ascorbic acid in man. International Journal for Vitamin and Nutrition Research 47, 383388.Google Scholar
Kanazawa, S. & Herbert, V. (1982). Vitamin B12 analogue content in human red cells, liver and brain. Clinical Research 30, 504A.Google Scholar
Kaplan, L. A., Lau, J. M. & Stein, E. A. (1990). Carotenoid composition, concentrations and relationships in various human organs. Clinical Physiology and Biochemistry 8, 110.Google Scholar
Kasparek, S. (1980). Chemistry of tocopherols and tocotrienols. In Vitamin E: A Comprehensive Treatise, pp. 765 [Machlin, L. J., editor]. New York: Dekker.Google Scholar
Kato, S. (1959). The effect of nicotine on thiamin levels in the chick. Folia Pharmacologica Japonica 55, 512.Google Scholar
Keagy, P. M., Shane, B. & Oace, S. M. (1988). Folate bioavailability in humans: effects of wheat bran and beans. American Journal of Clinical Nutrition 47, 8088.Google Scholar
Kern, F., Birkner, H. J. & Ostrower, V. S. (1978). Binding of bile acids by dietary fiber. American Journal of Clinical Nutrition 31, S175–179.Google Scholar
Kies, C., Wishart, C., McGee, M., Foss, Z., Yong, L. C., Quillian, J. & Fox, H. M. (1982). Pantothenic acid levels in urine, blood serum, and whole blood of adult humans fed graded levels of pantothenic acid. Federation Proceedings 41, 276A.Google Scholar
Kimura, M. & Itokawa, Y. (1977). Effects of calcium and magnesium deficiency on thiamine distribution in rat brain and liver. Journal of Neurochemistry 28, 389393.Google Scholar
Lakshmi, A. V. & Bamji, M. S. (1979). Metabolism of [2-14C]pyridoxine in riboflavin deficiency. Biochemical Medicine 22, 274281.CrossRefGoogle ScholarPubMed
Lala, V. R. & Reddy, V. (1970). Absorption of β-carotene from green leafy vegetables in undernourished children. American Journal of Clinical Nutrition 23, 110113.Google Scholar
Lanè, P. A. & Hathaway, W. E. (1985). Vitamin K in infancy. Journal of Pediatrics 106, 351359.Google Scholar
Lawson, D. E. M. (1980). Metabolism of vitamin D. In Vitamin D: Molecular Biology and Clinical Nutrition [Norman, A. W., editor]. New York: Dekker.Google Scholar
Lin, M. M. S. (1981). Thesis. University of Nebraska, Lincoln, Nebraska, USA.Google Scholar
Linnell, J. C., Smith, A. D. M., Smith, C. L., Wilson, J. & Matthews, D. M. (1968). Effects of smoking on metabolism and excretion of vitamin B12. British Medical Journal 2, 215216.Google Scholar
Loew, D. (1991). [Pharmacokinetics of the cobalamins: cyano-, hydroxy-, methylcobalamin.] In Pharmakologie und klinische Anwendung hochdosierter B-Vitamine [Reitbrock, N. editor], Darmstadt.Google Scholar
Loew, D. et al. (1988). [Pharmacokinetics of hydroxycobalamin and folic acid.] Vitaminspur 3, 168172.Google Scholar
Lubin, R., Daum, K. A. & Bean, W. B. (1956). Studies of pantothenic acid metabolism. American Journal of Clinical Nutrition 4, 420430.Google Scholar
McCormick, D. B. (1972). The fate of riboflavin in the mammal. Nutrition Reviews 30, 7579.Google Scholar
McCormick, D. B. (1989). Two interconnected B vitamins: riboflavin and pyridoxine. Physiological Reviews 69, 11701198.Google Scholar
Machlin, L. J. (1984). Pantothenic acid. In Handbook of Vitamins, Nutritional, Biochemical and Clinical Aspects, pp. 437457 [Machlin, L. J. editor]. New York: Dekker.Google Scholar
McLaren, D. S. & Zekian, B. (1971). Failure of enzymic cleavage of β-carotene. American Journal of Diseases of Children 121, 278280.Google Scholar
Maiani, G., Mobarhan, S., Ceccanti, M., Ranaldi, L., Gettner, S., Bowen, P., Friedman, H., de Lorenzo, A. & Ferro-Luzzi, A. (1989). Beta-carotene serum response in young and elderly females. European Journal of Clinical Nutrition 43, 749761.Google ScholarPubMed
Maislos, M., Silver, J. & Fainaru, M. (1981). Intestinal absorption of vitamin D sterols: differential absorption into lymph and portal blood in the rat. Gastroenterology 80, 15281534.Google Scholar
Marquet, A. (1977). New aspects of the chemistry of biotin and of some analogs. Pure and Applied Chemistry 49, 183196.Google Scholar
Mason, J. B., Gibson, N. & Kodicek, E. (1973). The chemical nature of the bound nicotinic acid of wheat bran: studies of nicotinic acid-containing macromolecules. British Journal of Nutrition 30, 297311.Google Scholar
Matsuda, I., Endo, F. & Motohara, K. (1991). Vitamin K deficiency in infancy. World Review of Nutrition and Dietetics 64, 85108.Google Scholar
Matsuura, A., Iwashima, A. & Nose, Y. (1975). Purification of thiamine-binding protein from Escherichia coli by affinity chromatography. Biochemical and Biophysical Research Communications 51, 241246.Google Scholar
Matthews, D. M. (1974). Absorption of water-soluble vitamins. In Biomembranes: Intestinal Absorption, vol. 4B, pp. 847915 [Smyth, D. H. editor]. New York: Plenum Press.Google Scholar
Mawer, E. B., Backhouse, J., Holman, C. A., Lumb, G. A. & Stanbury, S. W. (1972). The distribution and storage of vitamin D and its metabolites in human tissues. Clinical Science 43, 413431.CrossRefGoogle ScholarPubMed
Mayersohn, M., Feldman, S. & Gibaldi, M. (1969). Bile salt enhancement of riboflavin and flavin mononucleotide absorption in man. Journal of Nutrition 98, 288296.Google Scholar
Melethil, S., Mason, W. D. & Chang, C.-J. (1986). Dose-dependent absorption and excretion of vitamin C in humans. International Journal of Pharmaceutics 31, 8390.Google Scholar
Merrill, A. H. & Henderson, J. M. (1987). Diseases associated with defects in vitamin B6 metabolism or utilization. Annual Review of Nutrition 7, 137156.CrossRefGoogle ScholarPubMed
Micozzi, M. S., Brown, E. D., Edwards, B. K., Bieri, J. G., Taylor, P. R., Khachik, F., Beecher, G. R. & Smith, J. C. (1992). Plasma carotenoid response to chronic intake of selected foods and β-carotene supplements in men. American Journal of Clinical Nutrition 55, 11201125.Google Scholar
Mills, C. A., Cottingham, E. & Taylor, E. (1976). The effect of advancing age on dietary thiamine requirements. Archives of Biochemistry 9, 221227.Google Scholar
Monk, B. E., (1982). Metabolic carotenaemia. British Journal of Dermatology 106, 485487.CrossRefGoogle ScholarPubMed
Mrochek, J. E., Jolley, R. L., Young, D. S. & Turner, W. J. (1976). Metabolic response of humans to ingestion of nicotinic acid and nicotinamide. Clinical Chemistry 22, 18211827.Google Scholar
Munnich, A., Ogier, H. & Saudubray, J-M. (1990). [Pantothenic acid.] In Le Vitamine: Aspetti Metabolici, Genetici, Nutrizionali e Terapeutici, pp. 185201. Rome: Masson.Google Scholar
Munnich, A., Saudubray, J. M., Carré, G., Coudé, F. X., Ogier, H., Charpentier, C. & Frézal, J. (1981). Defective biotin absorption in multiple carboxylase deficiency. Lancet 2, 263.Google Scholar
Murata, A. (1991). Smoking and vitamin C. World Review of Nutrition and Dietetics 64, 3157.CrossRefGoogle ScholarPubMed
Murata, K. (1965). Review of Japanese literature on beriberi and thiamin, p. 220. Tokyo: Vitamin B1 Research Committee of Japan.Google Scholar
Murty, C. V. R. & Adiga, P. R. (1982). Pregnancy suppression by active immunization against gestation-specific riboflavin carrier protein. Sciece 216, 191193.Google Scholar
National Research Council (1989). Recommended Dietary Allowances, 10th Edn, pp. 137142. Washington, DC: National Academy Press.Google Scholar
Need, G. N., Morris, H. A., Horowitz, M. Y. & Nordin, B. E. C. (1993). Effects of skin thickness, age, body fat, and sunlight on serum 25-hydroxyvitamin D. American Journal of Clinical Nutrition 58, 882885.Google Scholar
Nishino, K. & Itokawa, Y. (1977). Thiamin malabsorption in vitamin B6 or vitamin B12 deficient rats. Journal of Nutrition 107, 775782.Google Scholar
Nose, Y. & Iwashima, A. (1965). Intestinal absorption of thiamin propyl disulfide. Journal of Vitaminology 11, 165170.Google Scholar
Olson, J. A. (1987). Recommended Dietary Intakes (RDI) of vitamin K in humans. American Journal of Clinical Nutrition 45, 687692.Google Scholar
Olson, J. A. & Hayaishi, O. (1965). The enzymatic cleavage of β-carotene into vitamin A by soluble enzymes of rat liver and intestine. Proceedings of the National Academy of Sciences, USA 54, 13641370.Google Scholar
Omaye, S. T. & Chow, F. I. (1984). Effect of hard red spring wheat bran on the bioavailability of lipid-soluble vitamins and growth of rats fed for 56 days. Journal of Food Science 49, 504506.Google Scholar
Parker, R. S., Viereck, S. M., Spielman, A. B., Brenna, J. T. & Goodman, K. J. (1992). Metabolism and biokinetics of 13C-β-carotene in humans following a small oral dose. FASEB Journal 6, 1645A.Google Scholar
Patterson, L. T., Nahrwold, D. L. & Rose, R. C. (1982). Ascorbic acid uptake in guinea pig intestinal mucosa. Life Sciences 31, 27832791.Google Scholar
Pearson, W. N. (1967). Blood and urinary vitamin levels as potential indices of body stores. American Journal of Clinical Nutrition 20, 514525.Google Scholar
Pietrzik, K. (1993). Problems of folate bioavailability. In Nutritional, Chemical and Food Processing Implications of Nutrient Availability. Proceedings, Part 2, 'Bioavailability 93', pp. 289299 [Schlemmer, U., editor].Google Scholar
Pike, R. L. & Brown, M. L. (1975). Water-soluble vitamins. Nutrition: an Integrated Approach, 2nd edn, pp. 80139. New York: Wiley.Google Scholar
Pinto, J., Huang, Y. P. & Rivlin, R. S. (1981). Inhibition of riboflavin metabolism in rat tissues by chlorpromazine, imipramine and amitriptyline. Journal of Clinical Investigation 67, 15001506.Google Scholar
Prentice, A. M. & Bates, C. J. (1980). Refection in rats fed on a sucrose-based riboflavin-deficient diet. British Journal of Nutrition 43, 171177.Google Scholar
Prince, M. R., Frisoli, J. K., Goetschkes, M. M., Stringham, J. M. & LaMuraglia, G. M. (1991). Rapid serum carotene loading with high-dose β-carotene: clinical implications. Journal of Cardiovascular Pharmacology 17, 343347.Google Scholar
Rafsky, H. A., Newman, B. & Jolliffe, N. (1947). The relationship of gastric acidity to thiamine excretion in the aged. Journal of Laboratory and Clinical Medicine 32, 118123.Google ScholarPubMed
Reibel, D. K., Wyse, B. W., Berkich, D. A., Palko, W. M. & Neely, J. R. (1981). Effects of diabetes and fasting on pantothenic acid metabolism in rats. American Journal of Physiology 240, E597–601.Google Scholar
Reisenauer, A. M., Krumdieck, C. L. & Halstead, C. H. (1977). Folate conjugase: two separate activities in human jejunum. Science 198, 196197.Google Scholar
Reynolds, R. D. (1988). Bioavailability of vitamin B6 from plant foods. American Journal of Clinical Nutrition 48, 863867.Google Scholar
Rhode, B. M., Cooper, B. A. & Farmer, F. A. (1983). Effect of orange juice, folic acid, and oral contraceptives on serum folate in women taking a folate-restricted diet. Journal of the American College of Nutrition 2, 221230.Google Scholar
Rietz, P., Gloor, U. & Wiss, O. (1970). [Menaquinones from human liver and sewage sludge.] Internationale Zeitschrift für Vitaminforschung 40, 351362.Google Scholar
Ristow, K. A., Gregory, J. F. & Damron, B. L. (1982). Effect of dietary fiber on the bioavailability of folic acid monoglutamate. Journal of Nutrition 112, 750758.Google Scholar
Rivers, J. M. (1987). Safety of high-level vitamin C ingestion. Annals of the New York Academy of Sciences 498, 445453.Google Scholar
Rock, C. L. & Swendseid, M. E. (1992). Plasma β-carotene response in humans after meals supplemented with dietary pectin. American Journal of Clinical Nutrition 55, 9699.Google Scholar
Rose, R. C. (1988). Transport of ascorbic acid and other water-soluble vitamins. Biochimica et Biophysica Acta 947, 335366.Google Scholar
Russell, R. M., Dahr, G. J., Dutta, S. K. & Rosenberg, I. H. (1979). Influence of intraluminal pH on folate absorption. Studies in control subjects and in patients with pancreatic insufficiency. Journal of Laboratory and Clinical Medicine 93, 428436.Google Scholar
Sadoogh-Abasian, F. & Evered, D. F. (1980). Absorption of nicotinic acid and nicotinamide from rat small intestine in vitro. Biochimica et Biophysica Acta 598, 385391.Google Scholar
Sadowski, J., Bacon, D., Hood, S., Davidson, K., Gauter, C., Haroon, Y. & Shepard, D. (1988). The application of methods used for the evaluation of vitamin K nutritional status in human and animal studies. In Current Advances in Vitamin K Research, pp. 453463 [Suttie, J. W., editor]. Amsterdam: Elsevier Science Publishing Co.Google Scholar
Said, H. M. & Hollander, D. (1985). Does aging affect the intestinal transport of riboflavin? Life sciences 36, 6973.Google Scholar
Said, H. M., Hollander, D. & Duong, Y. (1985). A dual, concentration-dependent transport system for riboflavin in rat intestine in vitro. Nutrition Research 5, 12691279.Google Scholar
Said, H. M., Horne, D. W. & Wagner, C. (1986). Effect of human milk folate binding protection on folate intestinal transport. Archives of Biochemistry and Biophysics 251, 114120.Google Scholar
Said, H. M., Ong, D. E. & Shingleton, J. L. (1989). Intestinal uptake of retinol: enhancement by bovine milk β-lactoglobulin. American Journal of Clinical Nutrition 49, 690694.Google Scholar
Said, H. M., Redha, R. & Nylander, W. (1987). A carrier-mediated, Na+ gradient-dependent transport for biotin in human intestinal brush-border membrane vesicles. American Journal of Physiology 253, G631–636.Google Scholar
Salter, D. N. & Blakeborough, P. (1988). Influence of goat's milk folate-binding protein on transport of 5-methyltetrahydrofolate in neonatal goat small intestinal brush border membrane vesicles. British Journal of Nutrition 59, 497507.Google Scholar
Sampson, D. A. & Chung, S. (1991). Dietary protein quality and vitamin B6 nutritional status in lactating rats. FASEB Journal 5, 557A.Google Scholar
Satyanarayana, U. & Narasinga Rao, B. S. (1980). Dietary tryptophan level and the enzymes of tryptophan NAD pathway. British Journal of Nutrition 43, 107113.Google Scholar
Sauberlich, H. E., Hodges, R. E., Wallace, D. L., Kolder, H., Canham, J. E., Hood, J., Raica, N. & Lowry, L. K. (1974). Vitamin A metabolism and requirements in the human studied with the use of labeled retinol. Vitamins and Hormones 32, 251275.Google Scholar
Saupe, J., Shearer, M. J. & Kohlmeier, M. (1994). Phylloquinone (vitamin K1) transport and its' influence on gamma-carboxyglutamic (Gla)-residues of osteocalcin in patients on maintenance hemodialysis. American Journal of Clinical Nutrition (In the press.)Google Scholar
Schaller, K. & Höller, H. (1974). Thiamine absorption in the rat. 1. Intestinal permeability and active transport of thiamine; passage and cleavage of thiamine pyrophosphate in vitro International for Vitamin and Nutrition Research 44, 443451.Google Scholar
Schaus, E. E., de Lumen, B. O., Chow, F. I., Reyes, P. & Omaye, S. T. (1985). Bioavailability of vitamin E in rats fed graded levels of pectin. Journal of Nutrition 115, 263270.Google Scholar
Schorah, C. J. (1992). The transport of vitamin C and effects of disease. Proceedings of the Nutrition Society 51, 189198.Google Scholar
Schubiger, G., Tonz, O., Gruter, J. & Shearer, M. J. (1993). Vitamin K1 concentration in breast-fed neonates after oral or intramuscular administration of a single dose of a new mixed micellar preparation of phylloquinone. Journal of Pediatric Gastroenterology and Nutrition 16, 435439.Google Scholar
Selhub, J., Powell, G. M. & Rosenberg, I. H. (1984). Intestinal transport of 5-methyltetrahydrofolate. American Journal of Physiology 246, G515–520.Google Scholar
Shaw, S., Meyers, S., Colman, N., Jayatilleke, E. & Herbert, V. (1987). The ileum is the major site of absorption of vitamin B12. Federation Proceedings 46, 1004A.Google Scholar
Shearer, M. J. (1990). Vitamin K and vitamin K-dependent proteins. British Journal of Haematology 75, 156162.Google Scholar
Shearer, M. J., Barkhan, P. & Webster, G. R. (1970). Absorption and excretion of an oral dose of tritiated vitamin K1 in man. British Journal of Haematology 18, 297308.Google Scholar
Shearer, M. J., McBurney, A. & Barkhan, P. (1974). Studies on the absorption and metabolism of phylloquinone (vitamin K1) in man. Vitamins and Hormones 32, 513542.Google Scholar
Shearer, M. J., Rahim, S., Barkhan, P. & Stimmer, L. (1982). Plasma vitamin K1 in mothers and their newborn babies. Lancet 2, 460463.Google Scholar
Shinzawa, T., Mura, T., Tsunei, M. & Shiraki, K. (1989). Vitamin K absorption capacity and its association with vitamin K deficiency. American Journal of Diseases of Children 143, 686689.Google Scholar
Simpson, K. L. & Chichester, C. O. (1981). Metabolism and nutritional significance of carotenoids. Annual Review of Nutrition 1, 351374.Google Scholar
Sitrin, M. D. & Bengoa, J. M. (1987). Intestinal absorption of cholecalciferol and 25-hydroxycholecalciferol in chronic cholestatic liver disease. American Journal of Clinical Nutrition 46, 10111015.Google Scholar
Somogyi, J. C. (1971). On antithiamine factors of fern. Journal of Vitaminology 17, 165174.Google Scholar
Spector, R. & Boose, B. (1979). Active transport of riboflavin by the isolated choroid plexus in vitro. Journal of Biological Chemistry 254, 1028610289.Google Scholar
Spector, R. & Boose, B. (1982). Riboflavin transport by rabbit kidney slices: characterization and relation to cyclic organic acid transport. Journal of Pharmacology and Experimental Therapeutics 221, 394398.Google Scholar
Spencer, R. P. & Brody, K. R. (1964). Biotin transport by small intestine of rat, hamster, and other species. American Journal of Physiology 206, 653657.Google Scholar
Stahl, W., Schwarz, W., Sundquist, A. R. & Sies, H. (1992). cis-trans Isomers of lycopene and β-carotene in human serum and tissues. Archives of Biochemistry and Biophysics 294, 173177.Google Scholar
Stamp, T. C. B. (1975). Factors in human vitamin D nutrition and in the production and cure of classical rickets. Proceedings of the Nutrition Society 34, 119130.Google Scholar
Steinberg, S. E., Campbell, C. L. & Hillman, R. S. (1979). Kinetics of the normal folate enterohepatic cycle. Journal of Clinical Investigation 64, 8388.Google Scholar
Stenflo, J., Fernlund, P., Egan, W. & Roepstorff, P. (1974). Vitamin K dependent modifications of glutamic acid residues in prothrombin. Proceedings of the National Academy of Sciences, USA 71, 27302733.Google Scholar
Stevenson, N. R. (1974). Active transport of L-ascorbic acid in the human ileum. Gastroenterology 67, 952956.Google Scholar
Strauss, L. H. & Scheer, P. (1939). [Effect of nicotine on vitamin C metabolism.] Zeitschrift für Vitaminforschung 9, 3948.Google Scholar
Sugarman, B. & Munro, H. N. (1980). [14C]pantothenate accumulation by isolated adipocytes from adult rats of different ages. Journal of Nutrition 110, 22972301.Google Scholar
Suttie, J. W. (1984). Vitamin K. In Handbook of Vitamins, Nutritional, Biochemical and Clinical Aspects, pp. 147198 [Machlin, L. J., editor]. New York: Dekker.Google Scholar
Suttie, J. W., Mummah-Schendel, L. L., Shah, D. V., Lyle, B. J. & Greger, J. L. (1988). Vitamin K deficiency from dietary vitamin K restriction in humans. American Journal of Clinical Nutrition 47, 475480.Google Scholar
Sweetman, L., Surh, L., Baker, H., Peterson, R. M. & Nyhan, W. L. (1981). Clinical and metabolic abnormalities in a boy with dietary deficiency of biotin. Pediatrics 68, 553558.Google Scholar
Tadera, K., Arima, M., Yoshino, S., Yagi, F. & Kobayashi, A. (1986). Conversion of pyridoxine into 6-hydroxypyridoxine by food components, especially ascorbic acid. Journal of Nutritional Science and Vitaminology 32, 267277.Google Scholar
Tadera, K., Kaneko, T. & Yagi, F. (1988). Isolation and structural elucidation of three new pyridoxine-glycosides in rice bran. Journal of Nutritional Science and Vitaminology 34, 167177.Google Scholar
Tamura, T. & Stokstad, E. L. R. (1973). The availability of food folate in man. British Journal of Haematology 25, 513532.Google Scholar
Tanaka, Y., Frank, H. & DeLuca, H. F. (1973). Biological activity of 1,25-dihydroxyvitamin D3 in the rat. Endocrinology 92, 417422.Google Scholar
Tarr, J. B., Tamura, T. & Stokstad, E. L. R. (1981). Availability of vitamin B6 and pantothenate in an average American diet in man. American Journal of Clinical Nutrition 34, 13281337.Google Scholar
Thoene, J. & Wolf, B. (1983). Biotinidase deficiency in juvenile multiple carboxylase deficiency. Lancet 2, 398.Google Scholar
Toggenburger, G., Landoldt, M. & Semenza, G. (1979). Na+-dependent electroneutral L-ascorbate transport across brush border membrane vesicles from human small intestine. Inhibition by D-erythorbate. FEBS Letters 108, 473476.Google Scholar
Traber, M. G., Burton, G. W., Ingold, K. U. & Kayden, H. J. (1990). RRR-and SRR-α-tocopherols are secreted without discrimination in human chylomicrons, but RRR-α-tocopherol is preferentially secreted in very low density lipoproteins. Journal of Lipid Research 31, 675685.Google Scholar
Traber, M. G., Ingold, K. U., Burton, G. W. & Kayden, H. J. (1988). Absorption and transport of deuterium-substituted 2R,4'R,8'R-α-tocopherol in human lipoproteins. Lipids 23, 791797.Google Scholar
Traber, M. G. & Kayden, H. J. (1989). Preferential incorporation of α-tocopherol vs γtocopherol in human lipoproteins. American Journal of Clinical Nutrition 49, 517526.Google Scholar
Traber, M. G., Kayden, H. J., Balmer Green, J. & Green, M. H. (1986). Absorption of water-miscible forms of vitamin E in a patient with cholestasis and in thoracic duct-cannulated rats. American Journal of Clinical Nutrition 44, 914923.Google Scholar
Trumbo, P. R. (1991). Influence of dietary protein on vitamin B6 bioavailability and secretion in milk. FASEB Journal 5, 557A.Google Scholar
van den Berg, H. (1991). Modern Lifestyles, Lower Energy Intake and Micronutrient Status, pp. 2136. Berlin: Springer-Verlag.Google Scholar
van den Berg, H. (1993). General aspects of bioavailability of vitamins. In: Proceedings Bioavailability '93; Nutritional, chemical and food processing in implications of nutrient availability. Berichte der Bundes-forschunganstalt für Ernährung, pp. 267278 [Schlemmer, U. editor].Google Scholar
van Vliet, T., van Schaik, F. & van den Berg, H. (1992). [Beta-carotene metabolism: the enzymatic cleavage to retinal.] Voeding 53, 186190.Google Scholar
Vaziri, N. D., Said, H. M., Hollander, D., Barbari, A., Patel, N., Dang, D. & Kariger, R. (1985). Impaired intestinal absorption of riboflavin in experimental uremia. Nephron 41, 2629.Google Scholar
Velázquez, A., Zamudio, S., Báez, A., Murguia-Corral, R., Rangel-Peniche, B. & Carrasco, A. (1990). Indicators of biotin status: a study of patients on prolonged total parenteral nutrition. European Journal of Clinical Nutrition 44, 1116.Google Scholar
Verdon, C. P. & Blumberg, J. B. (1988). Influence of dietary vitamin E on the intermembrane transfer of α-tocopherol as mediated by an α-tocopherol binding protein. Proceedings of the Society for Experimental Biology and Medicine 189, 5260.Google Scholar
Vieth, R. (1990). The mechanisms of vitamin D toxicity. Bone and Mineral 11, 267272.Google Scholar
Villard, L. & Bates, C. J. (1986). Carotene dioxygenase (EC 1.13.11.21) activity in rat intestine: effects of vitamin A deficiency and of pregnancy. British Journal of Nutrition 56, 115122.Google Scholar
Vinson, J. A. & Bose, P. (1988). Comparative bioavailability to humans of ascorbic acid alone or in a citrus extract. American Journal of Clinical Nutrition 48, 601604.Google Scholar
von Kries, R., Greer, F. R. & Suttie, J. W. (1993). Assessment of vitamin K status of the newborn infant. Journal of Pediatric Gastroenterology and Nutrition 16, 231238.Google Scholar
Wagner, C. (1985). Folate-binding proteins. Nutrition Reviews 43, 293299.Google Scholar
Wang, X-D., Tang, G-W., Fox, J. G., Krinsky, N. I. & Russell, R. M. (1991). Enzymatic conversion of β-carotene into β-apo-carotenals and retinoids by human, monkey, ferret, and rat tissues. Archives of Biochemistry and Biophysics 285, 816.Google Scholar
Warkany, J. (1975). Riboflavin deficiency and congenital malformations. In Riboflavin, pp. 279302 [Rivlin, R. S., editor]. New York: Plenum Press.Google Scholar
Webb, A. R., Kline, L. & Holick, M. F. (1988). Influence of season and latitude on the cutaneous synthesis of vitamin D3: exposure to winter sunlight in Boston and Edmonton will not promote vitamin D3 synthesis in human skin. Journal of Clinical Endocrinology and Metabolism 67, 373378.Google Scholar
Weber, F. (1981). Absorption mechanism for fat-soluble vitamins and the effect of other food constituents. In Nutrition in Health and Disease and International Development: Proceedings of the XII International Congress of Nutrition, pp. 119135. New York: Liss.Google Scholar
White, H. B. & Merrill, A. H. (1988). Riboflavin-binding proteins. Annual Review of Nutrition 8, 279299.Google Scholar
Whyte, M. P., Haddad, J. G., Walters, D. D. & Stamp, T. C. B. (1979). Vitamin D bioavailability: serum 25-hydroxyvitamin D levels in man after oral, subcutaneous, intramuscular, and intravenous vitamin D administration. Journal of Clinical Endocrinology and Metabolism 48, 906911.Google Scholar
Wolf, B., Grier, R. E., Allen, R. J., Goodman, S. I. & Kien, C. L. (1983). Biotinidase deficiency: the enzymatic defect in late-onset multiple carboxylase deficiency. Clinica Chimica Acta 131, 273281.Google Scholar
Wolf, H. (1971). Hormonal alteration of efficiency of conversion of tryptophan to urinary metabolites of niacin in man. American Journal of Clinical Nutrition 24, 792799.Google Scholar
Wood, H. G. & Barden, R. E. (1977). Biotin enzymes. Annual Review of Biochemistry 46, 385413.Google Scholar
Wu Leung, W. T., Busson, F. & Jardin, C. (1968). Food Composition Table for Use in Africa. Bethesda, MD: US Department of Health, Education and Welfare, and Rome: FAO.Google Scholar
Yang, Y-M., Simon, N., Maertens, P., Brigham, S. & Liu, P. (1989). Maternal-fetal transport of vitamin K1 and its effects on coagulation in premature infants. Journal of Pediatrics 115, 10091013.Google Scholar
Yung, S., Mayersohn, M. & Robinson, J. B. (1982). Ascorbic acid absorption in humans: a comparison among several dosage forms. Journal of Pharmaceutical Science 71, 282285.Google Scholar