Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-27T15:51:16.171Z Has data issue: false hasContentIssue false

Critical Evaluation of in Vitro Methods for Estimating Digestibility in Simple-Stomach Animals

Published online by Cambridge University Press:  14 December 2007

S. Boisen
Affiliation:
National Institute of Animal Science, Foulum, DK-8830 Tjele, Denmark
B. O. Eggum
Affiliation:
National Institute of Animal Science, Foulum, DK-8830 Tjele, Denmark
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © The Nutrition Society 1991

References

REFERENCES

Ahrens, F., Schön, J. & Schmitz, M. (1991). A discontinuous in vitro technique for measuring hind-gut fermentation in pigs. In Digestive Physiology in Pigs, pp. 226230 [Verstegen, M. W. A., Huisman, J. and den Hartzog, L. A., editors]. Wageningen: Puduc.Google Scholar
Araba, M. & Dale, N. M. (1990). Evaluation of protein solubility as an indicator of overprocessing soybean meal. Poultry Science 69, 7683.Google Scholar
Asp, N.-G., Johansson, C.-G., Hallmer, H. & Siljeström, M. (1983). Rapid enzymatic assay of insoluble and soluble dietary fiber. Journal of Agricultural and Food Chemistry 31, 476482.Google Scholar
Association of Official Analytical Chemists (1984). Official Methods of Analysis, 14th ed. Washington, DC: AOAC.Google Scholar
Assoumani, M. B., Nguyen, N. P., Lardinois, P. F., van Bree, J., Baudichau, A. & Bruyer, D. C. (1990). Use of a lysine oxidase electrode for lysine determination in Maillard model reactions and in soybean meal hydrolysates. Zeitschrift für Lebensmittelwissenschaft und - Technologie 23, 322327.Google Scholar
Aufrere, J. & Michalet-Doreau, B. (1988). Comparison of methods for predicting digestibility of feeds. Animal Feed Science and Technology 20, 203218.CrossRefGoogle Scholar
Babinszky, L., van der Meer, J. M., Boer, H. & den Hartog, L. A. (1990). An in-vitro method for prediction of the digestible crude protein content in pig feeds. Journal of the Science of Food and Agriculture 50, 173178.CrossRefGoogle Scholar
Bhatty, R. S. (1982). In vitro hydrolysis of skim milk and pea proteins by pepsin and rennin. Canadian Institute of Food Science and Technology Journal 15, 101108.Google Scholar
Björck, I., Nyman, M., Pedersen, B., Siljeström, M., Asp, N.-G. & Eggum, B. O. (1986). On the digestibility of starch in wheat bread. Studies in vitro and in vivo. Journal of Cereal Science 4, 111.CrossRefGoogle Scholar
Boisen, S. (1991). A model for feed evaluation based on in vitro digestible dry matter and protein. In Digestion in vitro [Fuller, M. F., editor]. Slough: Commonwealth Agricultural Bureaux International. (In the Press.)Google Scholar
Boisen, S., Agergaard, N., Rotenberg, S. & Kragelund, Z. (1985). Effects of gut flora on intestinal activities of trypsin, chymotrypsin, elastase and amylase in growing rats fed diets with cellulose, pectin or sand. Zeitschrif für Tierphysiologie, Tierernährung und Futtermittelkunde 53, 245254.CrossRefGoogle Scholar
Boisen, S. & Fernández, J. A. (1991 a). In vitro digestibility of energy and amino acids in pig feeds. In Digestive Physiology in Pigs, pp. 231236 [Verstegen, M. W. A., Huisman, J. and den Hartzog, L. A., editors]. Wageningen: Puduc.Google Scholar
Boisen, S. & Fernández, J. A. (1991 a). In vitro digestion as a basis for the prediction of energy and protein value in pig feeds. 42nd Annual Meeting of European Association of Animal Production, Berlin, Report (8 pp) presented at meeting September 1991.Google Scholar
Brulé, D. & Savoie, L. (1988). In vitro digestibility of protein and amino acids in protein mixtures. Journal of the Science of Food and Agriculture 43, 361372.CrossRefGoogle Scholar
Buchanan, R. A. (1969). In vivo and in vitro methods of measuring nutritive value of leaf-protein preparations. British Journal of Nutrition 23, 533545.CrossRefGoogle ScholarPubMed
Büchmann, N. B. (1979). In vitro digestibility of protein from barley and other cereals. Journal of the Science of Food and Agriculture 30, 583589.CrossRefGoogle ScholarPubMed
Carpenter, K. J. (1960). The estimation of the available lysine in animal-protein foods. Biochemical Journal 77, 604610.CrossRefGoogle ScholarPubMed
Cave, N. A. (1988). Bioavailability of amino acids in plant feedstuffs determined by in vitro digestion, chick growth assay, and true amino acid availability methods. Poultry Science 67, 7887.Google Scholar
Clunies, M. & Leeson, S. (1984). In vitro estimation of dry matter and crude protein digestibility. Poultry Science 63, 8996.CrossRefGoogle Scholar
Corring, T. (1980). The adaptation of digestive enzymes to the diet: its physiological significance. Reproduction, Nutrition, Développement 20, 12171235.CrossRefGoogle Scholar
Corring, T., Juste, C. & Lhoste, E. F. (1989). Nutritional regulation of pancreatic and biliary secretions. Nutrition Research Reviews 2, 161180.Google Scholar
Dierick, N., Vervaeke, I., Decuypere, J. & Hendrickx, H. (1985). Protein digestion in pigs measured in vivo and in vitro. In Digestive Physiology in the Pig, pp. 329332 [Just, A., Jørgensen, H. and Fernández, J. A., editors]. Copenhagen: National Institute of Animal Science.Google Scholar
Drake, A. (1991). Simultaneous in vitro prediction of precaecal protein and carbohydrate digestion by pigs. In Digestion in vitro [Fuller, M. F., editor]. Slough: Commonwealth Agricultural Bureaux International. (In the Press.)Google Scholar
Eggum, B. O. (1973). A study of certain factors influencing protein utilization in rats and pigs. Report of National Institute of Animal Science, Copenhagen, no. 406. Copenhagen: National Institute of Animal Science.Google Scholar
Eggum, B. O. (1991). The influence of dietary fibre on protein digestion and utilization. In Dietary Fibre – A Component of Food – Nutritional Function in Health and Disease. (In the Press.)Google Scholar
Eggum, B. O., Andersen, J. O. & Rotenberg, S. (1982). The effect of dietary fibre level and microbial activity in the digestive tract on fat metabolism in rats and pigs. Acta Agriculturæ Scandinavica 32, 145150.Google Scholar
Eggum, B. O. & Boisen, S. (1991). In vitro techniques of measuring digestion. In Digestive Physiology in Pigs, pp. 213225 [Verstegen, M. W. A., Huisman, J. and den Hartzog, L. A., editors]. Wageningen: Puduc.Google Scholar
Eggum, B. O., Hansen, I. & Larsen, T. (1989). Protein quality and digestible energy of selected foods determined in balance trials with rats. Plant Foods for Human Nutrition 39, 1321.Google Scholar
Ehle, F. R., Jeraci, J. L., Robertson, J. B. & Van Soest, P. J. (1982). The influence of dietary fiber on digestibility, rate of passage and gastrointestinal fermentation in pigs. Journal of Animal Science 55, 10711081.CrossRefGoogle Scholar
Elbers, A. R. W., Den Hartog, L. A., Verstegen, M. W. A. & Zandstra, T. (1989). Between- and within-herd variation in the digestibility of feed for growing-finishing pigs. Livestock Production Science 23, 183193.CrossRefGoogle Scholar
Fonty, G. & Gouet, P. (1989). Fibre-degrading microorganisms in the monogastric digestive tract. Animal Feed Science and Technology 23, 91107.CrossRefGoogle Scholar
Friedman, H. I. & Nylund, B. (1980). Intestinal fat digestion, absorption, and transport. A review. American Journal of Clinical Nutrition 33, 11081139.Google Scholar
Furuya, S., Sakamoto, K. & Takahashi, S. (1979). A new in vitro method for the estimation of digestibility using the intestinal fluid of the pig. British Journal of Nutrition 41, 511520.Google Scholar
Galibois, I., Savoie, L., Simoes Nunes, C. & Rérat, A. (1989). Relation between in vitro and in vivo assessment of aminoacid availability. Reproduction, Nutrition, Développement 29, 495507.CrossRefGoogle Scholar
Gauthier, S. F., Vachon, C., Jones, J. D. & Savoie, L. (1982). Assessment of Protein digestibility by in vitro enzymatic hydrolysis with simultaneous dialysis. Journal of Nutrition 112, 17181725.CrossRefGoogle ScholarPubMed
Gauthier, S. F., Vachon, C. & Savoie, L. (1986). Enzymatic conditions of an in vitro method to study protein digestion. Journal of Food Science 51, 960964.CrossRefGoogle Scholar
Goering, H. K. & Van Soest, P. J. (1970). Forage Fiber Analyses (Apparatus, Reagents, Procedures and Some Applications). Agriculture Handbook, no. 379. Washington, DC: Agricultural Research Service, US Department of Agriculture.Google Scholar
Graham, H., Löwgren, W. & Åman, P. (1989). An in vitro method for studying digestion in the pig. 2. Comparison with in vivo ileal and faecal digestibilities. British Journal of Nutrition 61, 689698.CrossRefGoogle Scholar
Grimble, G. K. & Silk, D. B. A. (1989). Peptides in human nutrition. Nutrition Research Reviews 2, 87108.CrossRefGoogle ScholarPubMed
Gurr, M. I., Borlak, N. & Ganatra, S. (1989). Dietary fat and plasma lipids. Nutrition Research Reviews 2, 6386.CrossRefGoogle ScholarPubMed
Harrison, M. D., Ballard, M. R. M., Barclay, R. A., Jackson, M. E. & Stilborn, H. L. (1991). A comparison of true digestibility for poultry and apparent ileal digestibility for swine. A classical in vitro method and NIR spectrophotometry for determining amino acid digestibility. In Digestive Physiology in Pigs, pp. 254259 [Verstegen, M. W. A., Huisman, J. and den Hartzog, L. A., editors]. Wageningen: Puduc.Google Scholar
Holm, J., Lundquist, I., Björck, I., Eliasson, A.-C. & Asp, N.-G. (1988). Degree of starch gelatinization, digestion rate of starch in vitro, and metabolic response in rats. American Journal of Clinical Nutrition 47, 10101016.CrossRefGoogle ScholarPubMed
Holzgraefe, D. P., Fahey, G. C. & Jensen, A. H. (1985). Influence of dietary alfalfa: orchardgrass hay and lasalocid on in vitro estimates of dry matter digestibility and volatile fatty acid concentrations of cecal contents and rate of digesta passage in sows. Journal of Animal Science 60, 12351246.Google Scholar
Howard, P. & Mahoney, R. R. (1989). Effect of dietary fibres on the enzymatic digestion of casein. Food Chemistry 34, 141146.CrossRefGoogle Scholar
Hsu, H. W., Vavak, D. L., Satterlee, L. D. & Miller, G. A. (1977). A multienzyme technique for estimating protein digestibility. Journal of Food Science 42, 12691273.CrossRefGoogle Scholar
Ikeda, K. & Kusano, T. (1983). In vitro inhibition of digestive enzymes by indigestible polysaccharides. Cereal Chemistry 60, 260263.Google Scholar
Just, A., Jørgensen, H. & Fernández, J. A. (1985). Correlations of protein deposited in growing female pigs to ileal and faecal digestible crude protein and amino acids. Livestock Production Science 12, 145159.CrossRefGoogle Scholar
Lathia, D., Hoch, G. & Kievernagel, Y. (1987). Influence of phytate on in vitro digestibility of casein under physiological conditions. Plant Foods for Human Nutrition 37, 229235.CrossRefGoogle ScholarPubMed
Le François, P. (1989). In-vitro availability of starch in cereal products. Journal of the Science of Food and Agriculture 49, 499501.CrossRefGoogle Scholar
Liener, I. E. & Kakade, M. L. (1980). Protease inhibitors. In Toxic Constituents of Plant Foodstuffs, 2nd ed., pp. 771 [Liener, I. E., editor]. New York: Academic Press.Google Scholar
Low, A. G. (1980). Nutrient absorption in pigs. Journal of the Science of Food and Agriculture 31, 10871130.CrossRefGoogle ScholarPubMed
Low, A. G. (1990). Protein evaluation in pigs and poultry. In Feedstuff Evaluation, pp. 91114 [Wiseman, J. and Cole, D. J. A., editors]. London: Butterworths.CrossRefGoogle Scholar
Löwgren, W., Graham, H. & Åman, P. (1989). An in vitro method for studying digestion in the pig. 1. Simulating digestion in the different compartments of the intestine. British Journal of Nutrition 61, 673687.Google Scholar
McDonough, F. E., Sarwar, G., Steinke, F. H., Slump, P., Garcia, S. & Boisen, S. (1990). In vitro assay for protein digestibility: interlaboratory study. Journal of the Association of Official Analytical Chemists 73, 622625.Google ScholarPubMed
Maga, J. A., Lorenz, K. & Onayemi, O. (1973). Digestive acceptability of proteins as measured by the initial rate of in vitro proteolysis. Journal of Food Science 38, 173174.Google Scholar
Mason, V. C. (1984). Metabolism of nitrogenous compounds in the large gut. Proceedings of the Nutrition Society 43, 4553.Google Scholar
Mauron, J., Mottu, F., Bujard, E. & Egli, R. H. (1955). The availability of lysine, methionine and tryptophan in condensed milk and milk powder. In vitro digestion studies. Archives of Biochemistry and Biophysics 59, 433451.CrossRefGoogle ScholarPubMed
Mehansho, H., Butler, L. G. & Carlson, D. M. (1987). Dietary tannins and salivary proline-rich proteins: interactions, induction, and defense mechanisms. Annual Review of Nutrition 7, 423440.CrossRefGoogle ScholarPubMed
Metz, S. H. M. & Van der Meer, J. M. (1985). Nylon bag and in vitro techniques to predict in vivo digestibility of organic matter in feedstuffs for pigs. In Digestive Physiology in the Pig, pp. 373376 [Just, A., Jørgensen, H. and Fernández, J. A., editors]. Copenhagen: National Institute of Animal Science.Google Scholar
Morón, D., Melito, C. & Tovar, J. (1989). Effect of indigestible residue from foodstuffs on trypsin and pancreatic α-amylase activity in vitro. Journal of the Science of Food and Agriculture 47, 171179.Google Scholar
Moughan, P. J., Schrama, J., Skilton, G. A. & Smith, W. C. (1989). In-vitro determination of nitrogen digestibility and lysine availability in meat and bone meals and comparison with in-vivo ileal digestibility estimates. Journal of the Science of Food and Agriculture 47, 281292.CrossRefGoogle Scholar
O'Dea, K., Snow, P. & Nestel, P. (1981). Rate of starch hydrolysis in vitro as a predictor of metabolic responses to complex carbohydrate in vivo. American Journal of Clinical Nutrition 34, 19911993.Google Scholar
Öste, R., Sjödin, P., Jägerstad, M., Björck, I. & Dahlqvist, A. (1985). Effect of Maillard reaction products on carbohydrate utilization – studies in vitro and in vivo. Food Chemistry 16, 3747.Google Scholar
Parsons, C. M. (1991). Use of pepsin digestibility, multienzyme pH change and protein solubility assays to predict in vivo protein quality of feedstuffs. In Digestion in vitro [Fuller, M. F., editor]. Slough: Commonwealth Agricultural Bureaux International. (In the Press.)Google Scholar
Pedersen, B. & Eggum, B. O. (1981). Prediction of protein digestibility by in vitro procedures based on two multienzyme systems. Zeitschrift für Tierphysiologie, Tierernährung und Futtermittelkunde 45, 190200.Google Scholar
Pedersen, B. & Eggum, B. O. (1983). Prediction of protein digestibility by an in vitro enzymatic pH-stat procedure. Zeitschrift für Tierphysiologie, Tierernährung und Futtermittelkunde 49, 265277.CrossRefGoogle Scholar
Pusztai, A. (1989). Biological effects of dietary lectins. In Recent Advances of Research in Antinutritional Factors in Legume Seeds, pp. 1729 [Huisman, J., van der Poel, T. F. B. and Liener, I. E., editors]. Wageningen: Puduc.Google Scholar
Robbins, R. C. (1978). Effect of ratio of enzymes to substrate on amino acid patterns released from proteins in vitro. International Journal for Vitamin and Nutrition Research 48, 4453.Google ScholarPubMed
Roehrig, K. L. (1984). Carbohydrate Biochemistry and Nutrition. Westport, CT.: AVI Publishing Co. Inc.Google Scholar
Sakamoto, K., Asano, T., Furuya, S. & Takahashi, S. (1980). Estimation of in vivo digestibility with the laying hen by an in vitro method using the intestinal fluid of the pig. British Journal of Nutrition 43, 389391.CrossRefGoogle Scholar
Sarwar, G., Savoie, L., Peace, R. W. & Parent, G. (1989). A comparison of in vitro enzymatic and rat balance methods for measuring digestibility of protein and amino acids in foods. In Absorption and Utilization of Amino Acids, vol. 3, pp. 231242 [Friedman, M., editor]. Baton Rouge, LA: CRC Press.Google Scholar
Satterlee, L. D., Kendrick, J. G., Jewell, D. K. & Brown, W. D. (1981). Estimating apparent protein digestibility from in vitro assays. In Protein Quality for Humans: Assessment and in vitro Estimation, pp. 316339 [Bodwell, C. E., Adkins, J. S. and Hopkins, D. T., editors]. Westport, CT.: AVI Publishing Co. Inc.Google Scholar
Sauer, W. C., den Hartog, L. A., Huisman, J., van Leeuwen, P. & de Lange, C. F. M. (1989). The evaluation of the mobile nylon bag technique for determining the apparent protein digestibility in a wide variety of feedstuffs for pigs. Journal of Animal Science 67, 432440.CrossRefGoogle Scholar
Sauer, W. C., Jørgensen, H. & Berzins, R. (1983). A modified nylon bag technique for determining apparent digestibilities of protein in feedstuffs for pigs. Canadian Journal of Animal Science 63, 233237.CrossRefGoogle Scholar
Sauer, W. C. & Ozimek, L. (1986). Digestibility of amino acids in swine: results and their practical applications. A review. Livestock Production Science 15, 367388.Google Scholar
Saunders, R. M., Connor, M. A., Booth, A. N., Bickoff, E. M. & Kohler, G. O. (1973). Measurement of digestibility of alfalfa prote in concentrates by in vivo and in vitro methods. Journal of Nutrition 103, 530535.CrossRefGoogle Scholar
Savoie, L. & Charbonneau, R. (1990). Specific role of endopeptidases in modulating the nature of protein digestion products. Plant Foods for Human Nutrition 40, 233242.Google Scholar
Savoie, L., Charbonneau, R. & Parent, G. (1989). In vitro amino acid digestibility of food proteins as measured by the digestion cell technique. Plant Foods for Human Nutrition 39, 93107.Google Scholar
Savoie, L. & Gauthier, S. F. (1986). Dialysis cell for the in vitro measurement of protein digestibility. Journal of Food Science 51, 494498.Google Scholar
Schneeman, B. O. (1978). Effect of plant fiber on lipase, trypsin and chymotrypsin activity. Journal of Food Science 43, 634635.CrossRefGoogle Scholar
Schneeman, B. O. (1982). Pancreatic and digestive function. In Dietary Fiber in Health and Disease, pp. 7383 [Vahouny, G. V. and Kritchevsky, D., editors]. New York: Plenum Publishing Corporation.CrossRefGoogle Scholar
Sheffner, A. L., Eckfeldt, G. A. & Spector, H. (1956). The pepsin-digest-residue (PDR) amino acid index of net protein utilization. Journal of Nutrition 60, 105120.CrossRefGoogle Scholar
Siljeström, M., Björk, I., Eliasson, A.-C., Lönner, C., Nyman, M. & Asp, N.-G. (1988). Effects of polysaccharides during baking and storage of bread. In vitro and in vivo studies. Cereal Chemistry 65, 18.Google Scholar
Steinhart, H. & Kirchgessner, M. (1973). [In vitro digestion apparatus for the enzymic hydrolysis of proteins.] Archiv für Tierernährung 23, 449459.CrossRefGoogle ScholarPubMed
Tanksley, T. D. & Knabe, D. A. (1984). Ileal digestibilities of amino acids in pig feeds and their use in formulating diets. In Recent Advances in Animal Nutrition 1984, pp. 7595 [Haresign, W. and Cole, D. J. A., editors]. London: Butterworths.Google Scholar
Taverner, M. R. & Farrell, D. J. (1981). Availability to pigs of amino acids in cereal grains. 3. A comparison of ileal availability values with faecal, chemical and enzymic estimates. British Journal of Nutrition 46, 173180.Google Scholar
Tilley, J. M. A. & Terry, R. A. (1963). A two-stage technique for the in vitro digestion of forage crops. Journal of the British Grassland Society 18, 104111.Google Scholar
Tuffnell, J. M. & Payne, J. W. (1985). A colorimetric enzyme assay using Escherichia coli to determine nutritionally available lysine in biological materials. Journal of Applied Bacteriology 58, 333341.CrossRefGoogle Scholar
Vachon, C., Gauthier, S., Jones, J. D. & Savoie, L. (1983). In vitro enzymatic release of amino acids from alkalitreated proteins containing lysinoalanine. Nutrition Reports International 27, 13031313.Google Scholar
Van Leeuwen, P., Verstegen, M. W. A., van Lonkhuijsen, H. J. & van Kempen, G. J. M. (1991). Near infrared reflectance (NIR) spectroscopy to estimate the apparent ileal digestibility of protein in feedstuffs. In Digestive Physiology in Pigs, pp. 260265 [Verstegen, M. W. A., Huisman, J. and den Hartzog, L. A., editors]. Wageningen: Pudoc.Google Scholar
Van der Meer, J. M. & Perez, J. M. (1990). In vitro evaluation of European diets for pigs. Prediction of the organic matter digestibility by an enzymatic method or by chemical evaluation. 41st Annual Meeting of European Association of Animal Production, Toulouse, Report (16 pp) presented at meeting July 1990.Google Scholar
Van der Poel, A. F. B. (1990). Effect of processing on bean (Phaseolus vulgaris L.). Protein quality. Thesis, Agricultural University of Wageningen.Google Scholar
Vervaeke, I. J., Decuypere, J. A., Dierick, N. A. & Henderickx, H. K. (1979). Quantitative in vitro evaluation of the energy metabolism influenced by virginiamycin and spiramycin used as growth promotors in pig nutrition. Journal of Animal Science 49, 846856.Google Scholar
Vervaeke, I. J., Dierick, N. A., Demeyer, D. I. & Decuypere, J. A. (1989). Approach to the energetic importance of fibre digestion in pigs. II. An experimental approach to hindgut digestion. Animal Feed Science and Technology 23, 169194.Google Scholar
White, J. S., Parsons, C. M. & Baker, D. H. (1988). An in vitro digestibility assay for prediction of the metabolizable energy of low-calorie dextrose polymeric bulking agents. Journal of Food Science 53, 12041207.Google Scholar
Wolza, A., Bressani, R. & Brenes, Gómez R. (1981). A comparison of in vivo and in vitro estimates of protein digestibility of native and thermally processed vegetable proteins. Plant Foods for Human Nutrition 31 3143.Google Scholar