Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-17T19:44:08.733Z Has data issue: false hasContentIssue false

Nutritional Effects of Tannins in Animal Feeds

Published online by Cambridge University Press:  14 December 2007

J. L. Mangan
Affiliation:
AFRC Institute of Animal Physiology and Genetics Research, Babraham, Cambridge CB2 4AT
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © The Nutrition Society 1988

References

REFERENCES

Agricultural Research Council (1980). The Nutrient Requirements of Ruminant Livestock. Farnham Royal: Commonwealth Agricultural Bureaux.Google Scholar
Ahuja, P. S., Hadiuzzaman, S., Davey, M. R. & Cocking, E. C. (1983 a). Prolific plant regeneration from protoplast derived tissues of Lotus corniculatus L. (birds foot trefoil). Plant Cell Reports 2, 101104.CrossRefGoogle Scholar
Ahuja, P. S., Lu, D. Y., Cocking, E. C. & Davey, M. R. (1983 b). An assessment of the cultural capabilities of Trifolium repens L. (white clover) and Onobrychis viciifolia Scop. (sainfoin) mesophyll protoplasts. Plant Cell Reports 2, 269272.CrossRefGoogle ScholarPubMed
Ashes, J. R., Mangan, J. L. & Sidhu, G. S. (1984). Nutritional availability of amino acids from proteins cross-linked to protect against degradation in the rumen. British Journal of Nutrition 52, 239247.CrossRefGoogle ScholarPubMed
Asquith, T. N. & Butler, L. G. (1986). Interactions of condensed tannins with selected proteins. Phytochemistry 25, 15911593.CrossRefGoogle Scholar
Bach, Knudsen K. E. & Munck, L. (1985). Dietary fibre contents and composition of sorghum and sorghumbased foods. Journal of Cereal Science 3, 153164.CrossRefGoogle Scholar
Bach, Knudsen K. E., Munck, L. & Eggum, B. O. (1988). Effect of cooking pH and polyphenol level on carbohydrate composition and nutritional quality of a sorghum (Sorghum bicolor (L.) Moench) food, Ugali. British Journal of Nutrition 59, 3147.Google Scholar
Barry, T. N. (1985). The role of condensed tannins in the nutritional value of Lotus pedunculatus for sheep. 3. Rates of body and wool growth. British Journal of Nutrition 54, 211217.CrossRefGoogle ScholarPubMed
Barry, T. N., Allsop, T. F. & Redekopp, C. (1986 a). The role of condensed tannins in the nutritional value of Lotus pedunculatus for sheep. 5. Effects on the endocrine system and on adipose tissue metabolism. British Journal of Nutrition 56, 607614.CrossRefGoogle ScholarPubMed
Barry, T. N. & Duncan, S. J. (1984). The role of condensed tannins in the nutritional value of Lotus pedunculatus for sheep. 1. Voluntary intake. British Journal of Nutrition 51, 485491.CrossRefGoogle ScholarPubMed
Barry, T. N. & Manley, T. R. (1984). The role of condensed tannins in the nutritional value of Lotus pedunculatus for sheep. 2. Quantitative digestion of carbohydrates and proteins. British Journal of Nutrition 51, 493504.CrossRefGoogle Scholar
Barry, T. N. & Manley, T. R. (1986). Interrelationships between the concentrations of total condensed tannin, free condensed tannin and lignin in Lotus sp. and their possible consequences in ruminant nutrition. Journal of the Science of Food and Agriculture 37, 248254.CrossRefGoogle Scholar
Barry, T. N., Manley, T. R. & Duncan, S. J. (1986 b). The role of condensed tannins in the nutritional value of Lotus pedunculatus for sheep. 4. Sites of carbohydrate and protein digestion as influenced by dietary reactive tannin concentration. British Journal of Nutrition 55, 123137.CrossRefGoogle ScholarPubMed
Bate-Smith, E. C. (1954). Leucoanthocyanins. I. Detection and identification of anthocyanidins formed from leucoanthocyanins in plant tissues. Biochemical Journal 58, 122125.CrossRefGoogle ScholarPubMed
Bate-Smith, E. C. (1973 a). Tannins of herbaceous leguminosae. Phytochemistry 12, 18091812.CrossRefGoogle Scholar
Bate-Smith, E. C. (1973 b). Haemanalysis of tannins: the concept of relative astringency. Phytochemistry 12, 907912.CrossRefGoogle Scholar
Bate-Smith, E. C. & Lerner, N. H. (1954). Leuco-anthocyanins. 2. Systematic distribution of leucoanthocyanins in leaves. Biochemical Journal 58, 126132.CrossRefGoogle ScholarPubMed
Beart, J. E., Lilley, T. H. & Haslam, E. (1985). Plant polyphenols – secondary metabolism and chemical defence: some observations. Phytochemistry 24, 3338.CrossRefGoogle Scholar
Beasley, T. H., Ziegler, H. W. & Bell, A. D. (1977). Determination and characterization of gallotannin by high performance liquid chromatography. Analytical Chemistry 49, 238243.CrossRefGoogle Scholar
Bell, T. A., Etchells, J. L., Singleton, J. A. & Smart, W. W. G. Jr (1965). Inhibition of pectinolytic and cellulolytic enzymes in cucumber fermentation by sericea. Journal of Food Science 30, 233239.CrossRefGoogle Scholar
Black, J. L., Beaver, D. E., Faichney, G. J., Howarth, B. R. & Graham, N. McC. (19801981). Simulation of the effects of rumen function on the flow of nutrients from the stomach of the sheep: Part I – description of a computer program. Agricultural Systems 6, 195219.CrossRefGoogle Scholar
Bond, D. A. (1976). In vitro digestibility of the testa in tannin-free field beans (Vicia faba L.). Journal of Agricultural Science, Cambridge 86, 561566.CrossRefGoogle Scholar
Bradfield, A. E. & Bate-Smith, E. C. (1950). Chromatographic behaviour and chemical structure. Biochimica et Biophysica Acta 4, 441444.CrossRefGoogle Scholar
Broderick, G. A. (1978). In vitro procedures for estimating rates of ruminal protein degradation and proportions of protein escaping the rumen undergraded. Journal of Nutrition 108, 181190.CrossRefGoogle Scholar
Brown, P. J. & Wright, W. B. (1964). An investigation of the interaction between milk proteins and tea polyphenols. Journal of Chromatography 11, 504514.CrossRefGoogle Scholar
Bullard, R. W. & Elias, D. J. (1980). Sorghum polyphenols and bird resistance. In Polyphenols in Cereals and Legumes, pp. 4349. [Hulse, J., editor]. Ottawa: International Development Research Centre.Google Scholar
Burroughs, W. D., Trenkle, A. & Vetter, R. L. (1974). A system for protein evaluation for cattle and sheep involving metabolizable protein (amino-acids) and urea fermentation potential of feedstuffs. Veterinary Medicine, Small Animal Clinician 69, 713722.Google ScholarPubMed
Clark, R. T. & Reid, C. S. W. (1974). Foamy bloat of cattle. A review. Journal of Dairy Science 57, 753785.CrossRefGoogle Scholar
Cooper, C. S. & Charleton, A. E. (1968). Sainfoin Symposium. Bozeman, Montana: Montana State University, Artcraft Printers.Google Scholar
Cope, W. A. & Burns, J. C. (1971). Relationship between tannin levels and nutritive value of Sericea. Crop Science 11, 231233.CrossRefGoogle Scholar
Cousins, B. W., Tanksley, T. D., Knabe, D. A. & Zebrowska, T. (1981). Nutrient digestibility and performance of pigs fed sorghums varying in tannin concentration. Journal of Animal Science 53, 15241537.CrossRefGoogle ScholarPubMed
Czochanska, Z., Foo, L. Y., Newman, R. H. & Porter, L. J. (1980). Polymeric proanthocyanidins. Stereo-chemistry, structural units and molecular weights. Journal of the Chemical Society, Perkin Transactions 1, 22782286.CrossRefGoogle Scholar
Czochanska, Z., Foo, L. Y., Newman, R. H., Porter, L. J., Thomas, W. A. & Jones, W. T. (1979). Direct proof of a homogeneous polyflavan-3-ol structure for polymeric proanthocyanidins. Journal of the Chemical Society, Chemical Communications 8, 375377.CrossRefGoogle Scholar
Demarquilly, C. & Weiss, P. (1970). Tableau de la valeur alimentaire des fourrages (Table of the nutritional value of forages). Etude no. 41. Versailles: INRA-SEI.Google Scholar
D'Mello, J. P. F. & Fraser, K. W. (1981). The composition of leaf meal from Leucaena leucocephala. Tropical Science 23, 7578.Google Scholar
Egan, A. R. & Ulyatt, M. J. (1980). Quantitative digestion of fresh herbage by sheep. VI. Utilization of nitrogen in five herbages. Journal of Agricultural Science, Cambridge 94, 4756.CrossRefGoogle Scholar
Eggum, B. O., Monowar, L., Bach Knudsen, K. E., Munck, L. & Axstell, J. (1983). Nutritional quality of sorghum and sorghum foods from Sudan. Journal of Cereal Science 1, 127137.CrossRefGoogle Scholar
Feeny, P. P. (1969). Inhibitory effect of oak leaf tannins on the hydrolysis of proteins by trypsin. Phytochemistry 8, 21192126.CrossRefGoogle Scholar
Ferguson, K. A., Hemsley, J. A. & Reis, P. J. (1967). Nutrition and wool growth. The effect of protecting dietary protein from microbial degradation in the rumen. Australian Journal of Science 30, 215217.Google Scholar
Ford, J. E. & Hewitt, D. (1979 a). Protein quality in cereals and pulses. 1. Application of microbiological and other in vitro methods in evaluation of rice (Oryza sativa L.), sorghum (Sorghum vulgare Pers.), barley and field beans (Vicia faba L.). British Journal of Nutrition 41, 341352.CrossRefGoogle ScholarPubMed
Ford, J. E. & Hewitt, D. (1979 b). Protein quality in cereals and pulses. 2. Influence of polyethylene glycol on the nutritional availability of methionine in sorghum (Sorghum vulgaris Pers.), field beans (Vicia faba L.) and barley. British Journal of Nutrition 42, 317323.CrossRefGoogle Scholar
Ford, J. E. & Hewitt, D. (1979 c). Protein quality in cereals and pulses. 3. Bioassays with rats and chickens on sorghum (Sorghum vulgare Pers.), barley and field beans. Influence of polyethylene glycol on digestibility of the protein in high-tannin grain. British Journal of Nutrition 42, 325340.CrossRefGoogle ScholarPubMed
Foo, L. Y. & Porter, L. J. (1980). The phytochemistry of proanthocyanidin polymers. Phytochemistry 19, 17471754.CrossRefGoogle Scholar
Fox, D. G., Sniffen, C. J., Van Soest, P. J. & Robinson, P. H. (1979). A computerized net protein system for formulating rations for beef and dairy cattle, using feed analysis data. Proceedings of the Cornell Nutrition Conference for Feed Manufacturers, pp. 5762.Google Scholar
Fuller, H. L., Potter, D. K. & Brown, A. R. (1966). The feeding value of grain sorghums in relation to their tannin content. University of Georgia, College of Agriculture Experiment Station. Bulletin N.S. 176, pp. 514. Athens, Georgia: University of Georgia.Google Scholar
Goldstein, J. L. & Swain, T. (1963). Changes in tannins in ripening fruit. Phytochemistry 2, 371383.CrossRefGoogle Scholar
Grasslands Research Institute (1982). The Future of Sainfoin in British Agriculture. Proceedings of meeting, 12 Oct 1982.Google Scholar
Haddock, E. A., Gupta, R. K., Al-Shafi, S. M. K., Lyden, K., Haslam, E. & Magnolato, D. (1982). The metabolism of gallic acid and hexahydroxydiphenic acid in plants. Biogenic and molecular taxonomic considerations. Phytochemistry 21, 10491062.CrossRefGoogle Scholar
Hagerman, A. E. & Bulter, L. G. (1978). Protein precipitation method for the quantitative determination of tannins. Journal of Agricultural and Food Chemistry 26, 809812.CrossRefGoogle Scholar
Hallberg, L. (1981). Bioavailability of dietary iron in man. Annual Review of Nutrition 1, 123147.CrossRefGoogle ScholarPubMed
Harborne, J. B., Mabry, T. J. & Mabry, H. (eds) (1975). In The Flavonoids, Parts 1 and 2. New York: Academic Press.CrossRefGoogle Scholar
Harvey, G. (1978). A nice touch of Sainfoin. Farmers Weekly Sept. 22.Google Scholar
Hulse, J. H. (ed.) (1980). Polyphenols in Cereals and Legumes. Ottawa: International Development Research Centre.Google Scholar
Hulse, J. H., Laing, E. M. & Pearson, O. E. (1980). Sorghum and the Millets: Their Composition and Nutritive Value. London: Academic Press.Google Scholar
Horigome, T., Kumar, R. & Okamoto, K. (1988). Effects of condensed tannins prepared from leaves of fodder plants on digestive enzymes in vitro and in the intestines of rats. British Journal of Nutrition 60, 275285.CrossRefGoogle ScholarPubMed
Jacques, D., Haslam, E., Bedford, G. R. & Greatbanks, D. (1973). Structure of the dimeric proanthocyanidin-A2 and its derivatives. Journal of the Chemical Society, Chemical Communications 15, 518520.CrossRefGoogle Scholar
Jambunathan, R. & Mertz, E. T. (1973). Relationship between tannin levels, rat growth and distribution of proteins in sorghum. Agricultural and Food Chemistry 21, 692696.CrossRefGoogle ScholarPubMed
Jarrige, R., Journet, M. & Vérité, R. (1978). Azote (nitrogen). Alimentation des Ruminants. INRA Publication. 78000. Versailles.Google Scholar
John, A. & Lancashire, J. A. (1981). Aspects of the feeding and nutritive value of Lotus species. Proceedings of the New Zealand Grassland Association 42, 152159.CrossRefGoogle Scholar
Jones, W. T., Anderson, L. B. & Ross, M. D. (1973). Bloat in cattle. 39. Detection of protein precipitants (flavolans) in legumes. New Zealand Journal of Agricultural Research 16, 441446.CrossRefGoogle Scholar
Jones, W. T., Broadhurst, R. B. & Lyttleton, J. W. (1976). The condensed tannins of pasture legume species. Phytochemistry 15, 14071409.CrossRefGoogle Scholar
Jones, W. T. & Lyttleton, J. W. (1969). Bloat in cattle. 29. The foaming properties of clover proteins. New Zealand Journal of Agricultural Research 12, 3146.CrossRefGoogle Scholar
Jones, W. T., Lyttleton, J. W. & Clark, R. T. J. (1970). Bloat in cattle. 33. The soluble proteins of legume forages in New Zealand and their relationship to bloat. New Zealand Journal of Agricultural Research 13, 149156.CrossRefGoogle Scholar
Jones, W. T. & Mangan, J. L. (1977). Complexes of the condensed tannins of the sainfoin (Onobrychis viciifolia Scop.) with Fraction 1 leaf protein and with submaxillary mucoprotein, and their reversal by polyethylene glycol and pH. Journal of the Science of Food and Agriculture 28, 126136.CrossRefGoogle Scholar
Jood, S., Chauhan, B. M. & Kapoor, A. C. (1987). Polyphenols of chickpea and blackgram are affected by domestic processing and cooking methods. Journal of the Science of Food and Agriculture 39, 145149.CrossRefGoogle Scholar
Joslyn, M. A. & Glick, Z. (1969). Comparative effects of gallotannic acid and related phenolics on the growth of rats. Journal of Nutrition 98, 119126.CrossRefGoogle ScholarPubMed
Joslyn, M. A., Nishira, H. & Ito, S. (1968). Leucoanthocyanins and related phenolic compounds of carob pods (Ceratonia siliqua). Journal of the Science of Food and Agriculture 19, 543550.CrossRefGoogle Scholar
Kadam, S. S., Smithard, R. R., Eyre, M. D. & Armstrong, D. G. (1987). Effects of heat treatments on antinutritional factors and quality of proteins in winged bean. Journal of the Science of Food and Agriculture 39, 267275.CrossRefGoogle Scholar
Kaufmann, W. (1977). Calculation of the protein requirements for dairy cows according to measurements of N-metabolism. In Protein Metabolism and Nutrition. European Association of Animal Production Publication no. 22, pp. 130132. Wageningen: Centre for Agricultural Publishing and Documentation.Google Scholar
Kendall, W. A. (1966). Factors affecting foams with forage legumes. Crop Science 6, 487489.CrossRefGoogle Scholar
Le Houérou, H. N. (ed.) (1980). Chemical composition and nutritive value of browse in tropical West Africa. In Browse in Africa. The Current State of Knowledge. Addis Ababa, Ethiopia: International Livestock Centre for Africa.Google Scholar
Lu, D. Y., Davey, M. R. & Cocking, E. C. (1982). Somatic embryogenesis from mesophyll protoplasts of Trigonella corniculata (Leguminosae). Plant Cell Reports 1, 278280.CrossRefGoogle ScholarPubMed
Mabry, T. J. & Markham, K. R. (1975). Mass spectrometry of flavonoids. In The Flavonoids, pp. 78126 [Harborne, J. B., Mabry, T. J. & Mabry, H., editors]. New York: Academic Press.CrossRefGoogle Scholar
McArthur, J. M., Miltimore, J. E. & Pratt, M. J. (1964). Bloat investigations. The foam stabilizing protein of alfalfa. Canadian Journal of Animal Science 44, 200206.CrossRefGoogle Scholar
McDonald, I. W. & Hall, R. J. (1957). The conversion of casein into microbial proteins in the rumen. Biochemical Journal 67, 400405.CrossRefGoogle ScholarPubMed
Maclean, W. C. Jr, De Romana, G. L., Gastanaduy, A. & Graham, G. G. (1983). The effect of decortication and extrusion on the digestibility of sorghum by preschool children. Journal of Nutrition 113, 20712077.CrossRefGoogle ScholarPubMed
Maclean, W. C. Jr, De Romana, G. L., Placko, P. & Graham, G. G. (1981). Protein quality and digestibility of sorghum in preschool children: balance study and plasma free amino acids. Journal of Nutrition 111, 19281936.CrossRefGoogle Scholar
McLeod, M. N. (1974). Plant tannins—their role in forage quality. Nutrition Abstracts and Reviews 44, 803815.Google Scholar
Mangan, J. L. (1959). Bloat in cattle. 11. The foaming properties of proteins, saponins and rumen liquor. New Zealand Journal of Agricultural Research 2, 4761.CrossRefGoogle Scholar
Mangan, J. L. (1972). Quantitative studies on nitrogen metabolism in the bovine rumen. The rate of proteolysis of casein and ovalbumin and the release and metabolism of the amino acids. British Journal of Nutrition 27, 261283.CrossRefGoogle ScholarPubMed
Mangan, J. L. (1982). The nitrogenous constituents of fresh forage. In Forage Protein in Ruminant Animal Production, British Society of Animal Production Occasional Publications no. 6, pp. 2540 [Thompson, D. J., Beever, D. E. and Gunn, R. G., editors]. Thames Ditton: British Society of Animal Production.Google Scholar
Mangan, J. L., Vetter, R. L., Jordan, D. J. & Wright, P. C. (1976). The effect of the condensed tannins of sainfoin (Onobrychis viciaefolia) on the release of soluble leaf protein into the food bolus of cattle. Proceedings of the Nutrition Society 35, 95 A.Google ScholarPubMed
Marks, D., Glyphis, J. & Leighton, M. (1987). Measurements of protein in tannin-protein precipitates using ninhydrin. Journal of the Science of Food and Agriculture 38, 255261.CrossRefGoogle Scholar
Marshall, D. R., Broue, P. & Munday, J. (1979). Tannins in pasture legumes. Australian Journal of Experimental Agriculture and Animal Husbandry 19, 192197.CrossRefGoogle Scholar
Martin, J. S. & Martin, M. M. (1983). Tannin assays in ecological studies. Precipitation of ribulose-1,5- bisphosphate carboxylase/oxygenase by tannic acid, quebracho and oak foliage extracts. Journal of Chemical Ecology 9, 285294.CrossRefGoogle ScholarPubMed
Martin, M. M., Rockholm, D. C. & Martin, J. S. (1985). Effects of surfactants, pH and certain cations on precipitation of proteins by tannins. Journal of Chemical Ecology 11, 485494.CrossRefGoogle ScholarPubMed
Maxson, E. D., Clark, L. E., Rooney, L. W. & Johnson, J. W. (1972). Factors affecting the tannin content of sorghum grain as determined by two methods of tannin analysis. Crop Science 12, 233235.CrossRefGoogle Scholar
Maxson, E. D., Rooney, L. W., Lewis, R. W., Clark, L. E. & Johnson, J. W. (1973). The relationship between tannin content, enzyme inhibition, rat performance and characteristics of sorghum grain. Nutrition Reports International 8, 145152.Google Scholar
Meyer, P., Heidmann, I., Forkmann, G. & Saedler, H. (1987). A new petunia flower colour generated by transformation of a mutant with a maize gene. Nature 330, 677678.CrossRefGoogle ScholarPubMed
Mitaru, B. N., Reichert, R. D. & Blair, R. (1984). The binding of dietary protein by sorghum tannins in the digestive tract of pigs. Journal of Nutrition 114, 17871796.CrossRefGoogle ScholarPubMed
Morton, J. F. (1970). Tentative correlations of plant usage and esophageal cancer zones. Economic Botany 24, 217226.CrossRefGoogle Scholar
Morton, J. F. (1987). Tannin and oesophageal cancer. Lancet i, 327328.CrossRefGoogle Scholar
Mueller-Harvey, I., McAllan, A. B., Theordorou, M. K. & Beaver, D. E. (1988). Phenolics in fibrous crop residues and plants and their effects on digestion and utilization of carbohydrates and proteins in ruminants. Plant Breeding and the Nutritive Value of Crop Residues. Addis Ababa, Ethiopia: International Livestock Centre for Africa.Google Scholar
Mueller-Harvey, I., Reed, J. D. & Hartley, R. D. (1987). Characterisation of phenolic compounds, including flavonoids and tannins, of ten Ethiopian browse species by high performance liquid chromatography. Journal of the Science of Food and Agriculture 39, 114.CrossRefGoogle Scholar
Muir, L. A., Wien, S., Duquette, P. F., Rickes, E. L. & Cordes, E. H. (1983). Effect of exogenous growth hormone and diethylstilbestrol on growth and carcase composition of growing lambs. Journal of Animal Science 56, 13151323.CrossRefGoogle Scholar
Murdiati, T. B. & McSweeney, C. S. (1987). Binding properties of hydrolysable tannins to proteins. Proceedings of the 2nd International Symposium on the Nutrition of Herbivores, pp. 4142 [Rose, M., editor]. Brisbane: University of Queensland.Google Scholar
Murdiati, T. B., McSweeney, C. S. & Lowry, J. B. (1987). Hydrolysable tannins in forages: metabolism in sheep. Proceedings of the 2nd International Symposium on the Nutrition of Herbivores, pp. 4546 [Rose, M., editor]. Brisbane: University of Queensland.Google Scholar
Nugent, J. H. A. & Mangan, J. L. (1981). Characteristics of the rumen proteolysis of fraction 1 (18S) leaf protein from lucerne (Medicago sativa L.). British Journal of Nutrition 46, 3958.CrossRefGoogle ScholarPubMed
Nishimuta, J. F., Ely, D. G. & Boling, J. A. (1974). Ruminal bypass of dietary soybean protein treated with heat, formalin and tannic acid. Journal of Animal Science 39, 952957.CrossRefGoogle Scholar
Osbourn, D. G., Terry, R. A., Cammell, S. B. & Outen, G. E. (1971). The effect of leuco-anthocyanins in sainfoin (Onobrychis viciifolia L.) on the availability of protein to sheep and upon the determination of the acid detergent fibre and lignin fractions. Proceedings of the Nutrition Society 30, 13A.Google Scholar
Pierpoint, W. S. (1983). Reactions of phenolic compounds with proteins and their relevance to the production of leaf protein. In Leaf Protein Concentrates, pp. 235267 [Telek, L. and Graham, H. D., editors]. Connecticut: AVI Publishing Co.Google Scholar
Purchas, R. W. & Keogh, R. G. (1984). Fatness of lambs grazed on Grassland Maku lotus and Grasslands Huia white clover. Proceedings of the New Zealand Society of Animal Production 44, 219221.Google Scholar
Rao, N. G. P. & Housse, A. R. (1971). Sorghum in the Seventies. New Delhi, India: Oxford and IBH Publishing Co.Google Scholar
Reed, J. D., Horvath, P. J., Allen, M. S. & Van Soest, P. J. (1985). Gravimetric determination of soluble phenolics including tannins from leaves by precipitation with trivalent ytterbium. Journal of the Science of Food and Agriculture 36, 255261.CrossRefGoogle Scholar
Reed, J. & Soller, H. (1987). Phenolics and nitrogen utilization in sheep fed browse. Proceedings of the 2nd International Symposium on the Nutrition of Herbivores, pp. 4748 [Rose, M., editor]. Brisbane: University of Queensland.Google Scholar
Reichert, R. D., Youngs, C. G. & Christensen, D. A. (1979). Polyphenols in Pennisetum millet. In Polyphenols in Cereals and Legumes [Hulse, J. H., editor]. Ottawa: International Development Research Centre.Google Scholar
Reid, C. S. W., Johns, A. T. & Vlieg, P. (1961). Bloat in cattle. 22. Further experiments on treatment and prevention. New Zealand Journal of Agricultural Research 4, 476483.CrossRefGoogle Scholar
Reis, P. J. & Tunks, D. A. (1969). Evaluation of formaldehyde-treated casein for wool growth and nitrogen retention. Australian Journal of Agricultural Research 20, 775781.CrossRefGoogle Scholar
Ribéreau-Gayon, P. (1972). Plant Phenolics. Edinburgh: Oliver & Boyd.Google Scholar
Ross, M. D. & Jones, W. T. (1974). Bloat in cattle. 40. Variation in flavanol content of Lotus. New Zealand Journal of Agricultural Research 17, 191195.CrossRefGoogle Scholar
Rostagno, H. D., Featherston, W. R. & Rogler, J. C. (1973 a). Studies on the nutritional value of sorghum grains with varying tannin contents for chicks. I. Growth studies. Poultry Science 52, 765772.CrossRefGoogle Scholar
Rostagno, H. D., Rogler, J. C. & Featherston, W. R. (1973 b). Studies on the nutritional value of sorghum grains with varying tannin contents for chicks. 2. Amino acid digestibility studies. Poultry Science 52, 772778.CrossRefGoogle Scholar
Roy, S. N. & Mukherjee, S. (1979 a). Influence of food tannins on certain aspects of iron metabolism. I. Absorption and excretion in normal and anaemic rats. Indian Journal of Biochemistry and Biophysics 16, 9398.Google Scholar
Roy, S. N. & Mukherjee, S. (1979 b). Influence of food tannins on certain aspects of iron metabolism. II. Storage and transport in normal and anaemic rats. Indian Journal of Biochemistry and Biophysics 16, 99104.Google Scholar
Roy, S. N. & Mukherjee, S. (1979 c). Influence of food tannins on certain aspects of iron metabolism. III. Heme synthesis and haematopoiesis in normal and anaemic rats. Indian Journal of Biochemistry and Biophysics 16, 151157.Google Scholar
Self, R., Eagles, J., Galletti, G. C., Mueller-Harvey, I., Hartley, R. D., Lea, A. G. H., Magnolato, D., Richli, U., Guger, R. & Haslam, E. (1986). Fast atom bombardment mass spectrometry of polyphenols (syn. vegetable tannins). Biomedical and Environmental Mass Spectrometry 13, 449468.CrossRefGoogle Scholar
Smart, W. W. G. Jr, Bell, T. A., Stanley, N. W. & Cope, W. A. (1961). Inhibition of rumen cellulase by an extract from Sericea forage. Journal of Dairy Science 44, 19451946.CrossRefGoogle Scholar
Stephenson, E. L., York, J. O., Bragg, D. B. & Ivy, C. A. (1971). The amino acid content and availability of different strains of grain sorghum to the chick. Poultry Science 50, 581584.CrossRefGoogle Scholar
Stifel, F. B., Vetter, R. L., Allen, R. S. & Horner, H. T. (1968). Chemical and ultrastructural relationships between alfalfa leaf chloroplasts and bloat. Phytochemistry 7, 355.CrossRefGoogle Scholar
Tagari, H., Henis, Y., Tamir, M. & Volcani, R. (1965). Effect of carob pod extract on cellulolysis, proteolysis, deamination and protein biosynthesis in an artificial rumen. Applied Microbiology 13, 437442.CrossRefGoogle Scholar
Tamir, M. & Alumot, E. (1970). Carob tannins—growth depression and levels of insoluble nitrogen in the digestive tract of rats. Journal of Nutrition 100, 573580.CrossRefGoogle ScholarPubMed
Ulyatt, M. J., Lancashire, J. A. & Jones, W. T. (1977). The nutritive value of legumes. Proceedings of the New Zealand Grassland Association 38, 107118.Google Scholar
Van Hoven, W. (1984). Tannins and digestibility in Greater Kudu. Canadian Journal of Animal Science 64, Suppl.177178.CrossRefGoogle Scholar
Waghorn, G. C., John, A., Jones, W. T. & Shelton, I. D. (1987 a). Nutritive value of Lotus corniculatus L. containing low and medium concentrations of condensed tannins for sheep. Proceedings of the New Zealand Society of Animal Production 47, 2530.Google Scholar
Waghorn, G. C., Ulyatt, M. J., John, A. & Fisher, M. T. (1987 b). The effect of condensed tannins on the site of digestion of amino acids and other nutrients on sheep fed on Lotus corniculatus L. British Journal of Nutrition 57, 115126.CrossRefGoogle ScholarPubMed
Wilson, A. D. (1977). The digestibility and voluntary intake of the leaves of trees and shrubs by sheep and goats. Australian Journal of Agricultural Research 28, 501508.CrossRefGoogle Scholar
Zelter, S. Z., LeRoy, F. & Tissier, J. P. (1970). Protection des protéïnes alimentaires contre la désamination bactérienne dans le rumen (Protection of feed proteins against bacterial deamination in the rumen). Annales de Biologie Animale Biochimie Biophysique 10, 123141.Google Scholar