Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T13:33:35.412Z Has data issue: false hasContentIssue false

Materials Aspects in Micro- and Nanofluidic Systems Applied to Biology

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

One of the key problems in microfabrication and especially nanofabrication applied to biology is materials selection. Proper materials must have mechanical stability and the ability to hermetically bond to other surfaces, yet not bind biological molecules. They must also be wettable by water and have good optical properties. In this article, we review some of the attempts to find materials for micro- and nanofluidic systems in biological applications that satisfy these rather conflicting constraints.We discuss the materials properties that make poly (dimethylsiloxane) or non-elastomeric materials more or less suitable for particular applications in biology. We also explore the effects and the importance of surface treatments for integrating biological objects into microfabricated and nanofabricated fluidic devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Hawkes, S.Y.F.W.Chapela, M.J.V. and Montembault, M.Combinatorial Sci. 24 (2005) p. 712.CrossRefGoogle Scholar
2Doig, A.P.Genetic Eng. News 25 (2005) p. 26.Google Scholar
3Pollack, L.Tate, M.Darnton, N.Knight, J.B.Gruner, S.M.Eaton, W.A. and Austin, R.H.Proc. Natl. Acad. Sci. USA 96 (1999) p. 10115.CrossRefGoogle Scholar
4Kauffmann, E.Darnton, N.C.Austin, R.H.Batt, C. and Gerwert, K.Proc. Natl. Acad. Sci. USA 98 (12) (2001) p. 6646.CrossRefGoogle Scholar
5Lipman, E.A.Schuler, B.Bakajin, O. and Eaton, W.A.Science 301 (2003) p. 1233.CrossRefGoogle Scholar
6Wang, Y.M.Tegenfeldt, J.O.Reisner, W.Riehn, R.Guan, X.-J.Guo, L.Golding, I.Cox, E.C.Sturm, J.C. and Austin, R.H.Proc. Natl. Acad. Sci. USA 102 (2005) p. 9796.CrossRefGoogle Scholar
7Riehn, R.Lu, M.Wang, Y.M.Lim, S.F.Cox, E.C. and Austin, R.H.Proc. Natl. Acad. Sci. USA 102 (2005) p. 10012.CrossRefGoogle Scholar
8Brody, J. P.Yager, P.Goldstein, R.E. and Austin, R.H.Biophys. J. 71 (1996) p. 3430.CrossRefGoogle Scholar
9Brody, J.P.Han, Y.Austin, R.H. and Bitensky, M.Biophys. J. 68 (1995) p. 2224.CrossRefGoogle Scholar
10Carlson, R.H.Brody, J.P.Chan, S.Gabel, C.Winkleman, J. and Austin, R.H.Phys. Rev. Lett. 79 (1997) p. 2149.CrossRefGoogle Scholar
11Whitesides, G.M.Ostuni, E.Takayama, S.Jiang, X.Y. and Ingber, D.E.Annu. Rev. Biomed. Eng. 3 (2001) p. 335.CrossRefGoogle Scholar
12Quake, S.R. and Scherer, A.Science 290 (2000) p. 1536.CrossRefGoogle Scholar
13Doi, M. and Edwards, S.F.The Theory of Polymer Dynamics (Oxford University Press, Oxford, U.K., 2001).Google Scholar
14Gere, J.M and Timoshenko, S.P.Mechanics of Materials (PWS-Kent Publishing, New York, 1984).Google Scholar
15Roure, O. du, Saez, A.Buguin, A.Austin, R.H.Chavrier, P.Siberzan, P. and Ladoux, B.Proc. Natl. Acad. Sci. USA 102 (2005) p. 2390.CrossRefGoogle Scholar
16Venables, J.A.Introduction to Surface and Thin Film Processes (Cambridge University Press, Cambridge, U.K., 2000).CrossRefGoogle Scholar
17Mattsson, A.E. and Kohn, W.J. Chem. Phys. 115 (2001) p. 3441.CrossRefGoogle Scholar
18Mastrangelo, C.H. and Hsu, C.H.Proc. IEEE Solid-State Sensors and Actuators Workshop (Hilton Head, S.C., 1992) p. 208.Google Scholar
19Armani, D. and Liu, C.12th Int. Conf. on MEMS (MEMS '99) p. 222.Google Scholar
20Russell, R.Millettt, I.S.Tate, M.W.Kwok, L.W.Nakatani, B.Gruner, S.M. S.Mochrie, G.J.Pande, V.Doniach, S.Herschlag, D. and Pollack, L.Proc. Natl. Acad. Sci. USA 99 (2002) p. 4266.CrossRefGoogle Scholar
21Hertzog, D.E.Michalet, X.Jager, M.Kong, X.X.Santiago, J.G.Weiss, S. and Bakajin, O.Anal. Chem. 76 (24) (2004) p. 7169.CrossRefGoogle Scholar
22Reisner, W.Morton, K.J.Riehn, R.Wang, Y.M.Yu, Z.Rosen, M.Sturm, J.C.Chou, S.Y.Frey, E. and Austin, R.H.Phys. Rev. Lett. 94 196101 (2005).CrossRefGoogle Scholar
23Bilsel, O.Kayatekin, C.Wallace, L.A. and Matthews, C.R.Rev. Sci. Instrum. 76 (1) 014302 (2005).CrossRefGoogle Scholar
24Huang, L.R.Cox, E.C.Austin, R.H. and Sturm, J.C.Science 304 (2004) p. 987.CrossRefGoogle Scholar
25Jackman, R.J.Floyd, T.M.Ghodssi, R.Schmidt, M.A. and Jensen, K.F.J. Micromech. Microeng. 11 (3) (2001) p. 263.CrossRefGoogle Scholar
26Gennes, P. G. de, Brochard-Wyart, F., and Quere, D.Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, Heidelberg, 2004).CrossRefGoogle Scholar
27Bhattacharya, S.Datta, A.Berg, J.M. and Gangopadhyay, S.J. Microelectromech. Sys. 14 (3) (2005) p. 590.CrossRefGoogle Scholar
28Tong, Q.Y. and Goesele, U.Semiconductor Wafer Bonding (Wiley, New York, 1999) p. 55.Google Scholar
29Bouaidat, S.Hansen, O.Bruus, H.Berendsen, C.Bau-Madsen, N.K., Thomsen, P.Wolff, A. and Jonsmann, J.Lab Chip 5 (8) (2005) p. 827.CrossRefGoogle Scholar
30Chan, C.M., Ko, T.M., and Hiraoka, H., Surf. Sci. Rep. 24 (1996) p. 1.CrossRefGoogle Scholar
31Chan, C.M., Polymer Surface Modification and Characterization (Hansa, Munich, 1994).Google Scholar
32Lee, J.H., Park, J.W., and Lee, H.B., Biomaterials 12 (1991) p. 443.CrossRefGoogle Scholar
33McDonald, J.C. and Whitesides, G.M., Acc. Chem. Res. 35 (2002) p. 491.CrossRefGoogle Scholar