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  Abstract
  A new laser-driven ion acceleration mechanism has been identified
using particle-in-cell (PIC) simulations. This mechanism allows ion
acceleration to GeV energies at vastly reduced laser intensities compared
with earlier acceleration schemes. The new mechanism, dubbed “Laser
Break-out Afterburner” (BOA), enables the acceleration of carbon
ions to greater than 2 GeV energy at a laser intensity of only
1021 W/cm2, an intensity that has been realized
in existing laser systems. Other techniques for achieving these energies
in the literature rely upon intensities of 1024
W/cm2 or above, i.e., 2–3 orders of magnitude higher
than any laser intensity that has been demonstrated to date. Also, the BOA
mechanism attains higher energy and efficiency than target normal sheath
acceleration (TNSA), where the scaling laws predict carbon energies of 50
MeV/u for identical laser conditions. In the early stages of the BOA,
the carbon ions accelerate as a quasi-monoenergetic bunch with median
energy higher than that realized recently experimentally.
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  1. INTRODUCTION
 Acceleration of ions via the interaction of ultra-intense lasers with
thin, solid density targets is a currently a topic of intense interest
(Snavely et al., 2000; Maksimchuk
et al., 2000; Chirila et al.,
2004; Honrubia & Tikhonchuk, 2004; Borghesi et al., 2005; Chen & Wilks, 2005). In addition to the early proton acceleration
experiments, higher-Z ion beams have been generated (Hegelich
et al., 2002, 2005; Fernández et al., 2005; Roth et al., 2005; Flippo et al., 2006), and monoenergetic higher-Z ion beams
have been realized (Hegelich et al., 2006). These beams are produced by the conversion of a
short pulse laser onto the front surface of a target foil of thickness
ranging, typically, from a few to tens of microns. In these settings,
target normal sheath acceleration (TNSA) (Hatchett et al., 2000; Wilks et al., 2001) has been identified as the dominant ion
acceleration mechanism.
 Recently, Fuchs et al. (2006a, 2006b) reported proton acceleration from
aluminum targets of varying target thickness. An innovative feature of
these experiments was the use of extremely high contrast ratio
(1012) short pulse laser beam to irradiate the target. The high
contrast ratio allowed good target integrity to be maintained with very
thin targets that would be destroyed by the shocks from the prepulses of
typical high-intensity short-pulse lasers, which have contrast ratios of
106 to 107. The high contrast ratio allowed good
target integrity to be maintained with very thin targets that would
normally be destroyed by the shock driven by the laser prepulse of a
typical high-intensity short-pulse laser with contrast ratio of
106 to 107. The Fuchs et al. (2006a, 2006b) measurements at a laser driver of
lower intensity than in the thicker target shots show an increase in
maximum ion energy with very thin targets. A local maximum in proton
energy was obtained with a 50 nm thick target.
 Motivated by these results, we have performed particle-in-cell (PIC)
simulations on the interaction of a short pulse laser
(I0 = 1021 W/cm2), with
targets of thickness ranging from 10 to 500 nm. In these simulations,
behavior resembling that observed in the Fuchs et al. (2006a, 2006b) experiments is obtained. With the use
of a 30 nm carbon foil (target thickness comparable to an laser skin
depth), a relative increase in ion beam energy by more than an order of
magnitude over traditional TNSA is achieved. This dramatic increase
suggests the presence of an ion acceleration mechanism beyond normal
TNSA.
 In this paper, we examine using PIC simulations the kinetic physics of
ion acceleration from ultrathin targets. In the simulations, target
thicknesses are varied from 0.5 micron to ten nanometers in size (Section
2). Enhanced acceleration occurs when the target thickness becomes
comparable to the laser skin depth. Then, the behavior of the laser-target
interaction is modified, and a sizable enhancement in beam energy and
quality (ΔEbeam/Ebeam)
over TNSA acceleration is attained. After a brief period of TNSA, the
enhanced acceleration phase has two distinct stages: the first stage, a
period of enhanced TNSA, during which the cold electron background
converts entirely to hot electrons. The laser then reheats the refluxing
hot electrons to higher energy. TNSA electric fields scale with the hot
electron temperature, so further heating of the hot electron population to
yet higher energies leads to larger electric fields in the sheath. The
second stage is the “laser break-out afterburner” (BOA), when
the laser penetrates the rear of the target and generates a large
longitudinal electric field localized at the rear of the target, with the
location of the peak field co-moving with the ions. The physics underlying
the two enhanced acceleration stages, as well as the nonlinear end state
of BOA, is described below. We conclude with discussion of possible
applications of this technique, including as drivers for fast ignition
inertial confinement fusion, medical applications, and radiography.

2. PARTICLE-IN-CELL SIMULATIONS AND ANALYSIS
OF ENHANCED TNSA AND THE LASER BREAK-OUT AFTERBURNER
 Simulations of ion acceleration are performed using the fully
explicit, massively parallel, relativistic, and electromagnetic PIC code
VPIC (Albright et al., 2006). VPIC
employs exact charge and magnetic field divergence-conserving algorithms,
energy-conserving field interpolations (E and B solve),
a sixth order magnetic field advance, and an exponentially differenced
explicit field solver on a Cartesian Yee-mesh (Yee, 1966). The simulations are conducted in one spatial
dimension (1D), in a system domain 100 μm in length, with absorbing
boundary conditions for the fields and particles. A 1 μm wavelength
laser of intensity 1021 W/cm2 enters from the
left boundary and the front surface of the thin target is located at a
distance 20 μm from the entrance. The target is composed of electrons
and fully ionized carbon ions C6+ of solid density
(ne /ncr =
660, where ncr is the critical density), and
with a thickness ranging from 10 to 500 nm. A rise time of
tωpe = 2500 (∼0.055 ps), where
ωpe is the initial electron plasma frequency is used for
the laser intensity at the entrance to reach its maximum. After this time,
the laser intensity is held constant throughout the simulation. The
simulation cell size is 0.3λD0, with
λD0 representing the initial Debye
length of the electrons, which are of temperature
Te = 165 keV initially; the ions are cold
(Ti ≈ 0). In the following discussion, we
describe the different stages of enhanced ion acceleration using results
from a representative simulation in which the target is a pure carbon
target of thickness 30 nm and the laser intensity is 1021
W/cm2.
2.1. Initial TNSA Acceleration Phase
 At an earlier time, the ion acceleration follows the TNSA mechanism.
Hot electrons generated by the conversion of the laser on the front
surface of the target propagate through the target and form a sheath on
the rear target surface. After an initial transient phase, this sheath
evolves to a quasi-steady-state associated with the two-temperature (cold
background and laser-heated hot electron component) electron plasma,
consistent with that examined previously (Passoni & Lontano, 2004; Passoni et al., 2004). Thick target foils experience an extended
period of TNSA. In thin foils, the early-time sheath structure shown in
Figure 1 (and found in all of the simulations at
the target thicknesses considered) is arrested by enhanced TNSA and,
later, the break-out afterburner (both described below). An important
feature of the early TNSA phase is the presence of a dense, cold electron
component within the target that provides the dominant source of return
current to the laser conversion region, and which prevents significant
penetration of the laser into the foil. The acceleration of ions during
this phase is modest compared with that of the later stages of the
acceleration. In Figure 1, the carbon ion energy
during this phase is only of order MC
c2(5 × 10−5) ∼ 0.6 MeV for
the thin targets. Obviously, TNSA in thicker (∼10 micron) targets can
produces ions of much higher peak energy than this; the advantage of using
thin targets is manifest in the later stages.



Electric field and ion momentum during the TNSA phase of the ion
acceleration for a simulation in which the target is a carbon foil of
thickness 30 nm and the peak laser intensity is 1021
W/cm2. The left panel shows the longitudinal
(Ex) component of the electric field (black
curve). The field exhibits a ponderomotive region at the front surface
(the peak located at 19.5 microns) and a modest sheath field (x
> 20.5 microns) at the rear target surface. This sheath provides the
TNSA. The laser field (arb. units) is shown in red. In the right panel,
ion momentum vs. position are shown.





2.2. Enhanced TNSA Phase
 In very thin targets, when a sufficient fraction of the cold electrons
is promoted to hot, the physics changes, as shown in Figure 2. We call this phase “enhanced
TNSA.” In the top panel, the electrostatic field
Ex is shown with the laser field
Ey at tωpe = 4920,
with units for each as in Figure 1. At this
time, the plasma, although still overdense, has the electron skin depth
comparable to the target thickness (this is shown in the figure by the
penetration of the finite-amplitude transverse electric field into the
target). This condition arises for two reasons: first, as the laser heats
the cold electrons in the foil, an increasing number of electrons are
expelled to the sheath at the rear of the target, so fewer electrons
remain within the foil, and ωpe decreases within the
target. Second, the electrons are heated by the laser to highly
relativistic speeds, which lowers the plasma frequency by approximately a
factor 〈γ〉−1/2, with 〈γ〉
the mean relativistic gamma parameter.



Electric field and ion momentum during the enhanced TNSA phase of the
same simulation shown in Fig. 1. The skin depth
within the target has become comparable in size to the target thickness.
The ponderomotive force imparted by the laser field
(Ey: red curve, upper panel, in arb. units)
augments the sheath field on the rear target surface
(Ex: black curve, upper panel) and produces a
period of enhanced ion acceleration (bottom panel).




 During the enhanced TNSA phase, the attenuated but finite oscillating
laser field in the target imposes a ponderomotive drive to all of the
electrons within the target. This modifies the profile of the longitudinal
field by introducing at the rear surface, in addition to the sheath field,
a spiky component in the center of the target associated with the
ponderomotive drive of the laser (see the spike in the
Ex field in the top panel of Fig. 2). This results in an increased conversion
efficiency of the laser into hot electrons. Moreover, the entire layer of
electrons within the target oscillates in the laser field, which very
rapidly heats the electrons. After a brief time interval (Δt
< 28 fs—the time between the two snapshots in Figs. 1 and 2),
essentially no cold electrons remain: all have been promoted to highly
relativistic energies by their interaction with the laser.
 The electric field experienced by the ions (see the lower panel),
which is a combination of space-charge separation from the sheath and
ponderomotive drive from the laser, is considerably larger than
experienced during the TNSA phase. Moreover, in sufficiently thin targets,
the ions accelerate as a solitary bunch peaked around a well defined mean
energy. This characteristic is reminiscent of the monoenergetic ions
measured by Hegelich et al. (2006), but
without the requirement of a complex, multi-component target. In Figure 2, the carbon ion energy during this phase is
localized around MC
c2(6.2 × 10−4) ∼ 7.4
MeV.

2.3. Laser Break-Out Afterburner Phase
 The laser BOA process is exemplified by the conditions at
tωpe = 7320 in Figure
3, where the laser field Ey and
electron phase space distribution for the entire simulation domain are
shown (left two panels). At this time, the hot electron plasma expands
sufficiently to become underdense to the laser and the laser penetrates
the target. The resulting longitudinal electric field is enhanced
significantly compared with that of the earlier phases and co-moves with
the ions, as shown in the black curve in the upper right panel. During
this phase, the ions accelerate into a high energy, quasi-monoenergetic
ion beam (bottom right panel). The ion beam shown has energy peaked about
0.022MC c2 ∼ 300 MeV
and comprises ∼35% of the ions within the layer (see the inset), with
a FWHM of the beam that is approximately 15% of the mean energy. At this
time, 4% of the incident laser energy has been converted to the energy of
the quasi-monoenergetic ion beam. If realized experimentally, the BOA
could represent a substantial improvement in conversion efficiency over
the TNSA-based mechanism for generating monoenergetic ions discovered by
Hegelich et al. (2006).



Laser field (top left) and electron phase space (bottom left) over the
entire simulation domain during the break-out afterburner phase of the
same simulation as shown in Fig. 1. The
top-right panel is a blow-up of longitudinal (black) and transverse (red,
arb. units) electric fields in the region near the ion layer. The
bottom-right panel shows ion momentum vs. position.




 The origin of the enhanced electric field during this stage is
associated with the electron dynamics in the penetrated laser field. The
laser interaction with the sheath electrons produces a highly relativistic
high-temperature electron beam with mean momentum near the ion layer (at
position x ≈ 22 microns) of approximately
20me c and
pth/me c
∼ 50. As is well known from plasma kinetic theory, conditions of large
relative drift between electrons and ions can lead to a Buneman-like
instability, suitably generalized here to account for kinetic and
relativistic effects. In this case, the electron beam moves with speed
∼ c compared with a relatively slow (non-relativistic) ion
beam. Buneman instabilities grow extremely rapidly and act to reduce the
relative drift between ions and electrons. The phase velocity of the
Buneman instability is resonant with the ions and results in an
acceleration and eventual heating of the ions. With the laser drive
present, as the electrons lose momentum to the ions, the electrons regain
their lost momentum from their interaction with the laser. In this way,
the instability may be maintained for a longer period of time before
saturation. In this process, the laser and co-moving electron beam
efficiently couple momentum from the incident laser field to the ions. An
initial study of the wave dispersion spectra obtained from the PIC
simulations is consistent with this hypothesis. More detailed analysis of
the plasma kinetics underlying the BOA will be provided in a forthcoming
article.
 To summarize, the three processes: initially, a period of pure TNSA
occurs, where the dominant return current is provided by the cold
electrons and the laser ponderomotive drive is localized to the front of
the target. Then, enhanced TNSA ensues, where the peak laser ponderomotive
drive moves into the target and the efficiency with which the laser
converts to hot electrons increases; during this phase, essentially all
cold electrons are promoted to hot. As the target plasma becomes
underdense to the laser, and the penetration of the laser produces strong
longitudinal electric fields through a Buneman-like instability which
accelerates the ions into a very high energy beam. A comparison of the
longitudinal electric fields from the three stages is shown in Figure 4.



A comparison of longitudinal electric field for the three times shown
in Figures 1 (black), 2 (green), and 3 (red). During the period when the
break-out afterburner is operative, the longitudinal electric field is
much larger than the early-time TNSA field and the peak field co-moves
with the ions. This large electric field is responsible for the dramatic
enhancement in ion acceleration.





2.4. Late-Time Dynamics of Laser Break-Out
Afterburner
 After the laser penetrates the foil and propagates through the sheath,
the nonlinear interaction among the light wave and particles, as well as
possibly the relaxation of the ion distribution as the result of the
Buneman instability, causes the ion distribution to lose its monoenergetic
character and break into a series of “beamlets” of
successively decreasing energy. This behavior is shown in Figure 5. The front portion of the ion beam continues
to accelerate to higher energy and the highest energy beamlet shown in the
figure achieves a peak energy 0.04MC
c2 ∼ 700 MeV, albeit with a low number of
particles at this energy. The energy spectra, a portion of which is shown
in the left panel of Figure 7, evinces this
succession of peaks.



Late-time evolution of the laser break-out afterburner for the same
simulation as shown in Fig. 1. As the laser
penetrates the foil, the quasi-monoenergetic ion beam breaks up into a
sequence of beamlets of decreasing energy. The most energetic ions
continue to be accelerated to yet higher energy as this phase of the
afterburner evolves. At the time shown, the most energetic ions have
energy 700 MeV.




 At very late time, the beamlet structure of the ion distribution
evolves into a Boltzmann-like distribution of ion energies that extends to
yet higher energy. In the right panel of Figure
7, carbon ions are promoted to energies of 2 GeV from the
nonlinear, late-time action of the BOA. The temperature of the high energy
tail of the carbon spectrum is approximately 540 MeV.


3. ION ENERGY SCALING WITH TARGET
THICKNESS
 The scaling of peak acceleration with target thickness for targets of
size 0.5, 0.05, 0.03, and 0.01 μm has been obtained (Fig. 6). In this scaling study, the ion kinetic energy
from the simulations is measured at a time when the ion beam has reached
its maximum energy while remaining essentially monoenergetic. The scaling
thus obtained resembles the experimental results of Fuchs et al.
(2006a, 2006b) from proton acceleration data with
variable Al target thickness. The maximum ion kinetic energy increases
significantly with target thickness from 0.5 μm to 0.05 μm
thickness; optimal ion acceleration was attained at 0.03 μm thickness,
with an energy decrease as the target thickness reduces further.



Scaling of maximum energy of monoenergetic C6+ ion beam as
a function of target thickness from PIC simulations at intensity
I = 1021 W/cm2. The target of thickness
30 nm yields the highest energy monoenergetic beam.







Energy spectra obtained for two times during the later stages of the
break-out afterburner for intensity I = 1021
W/cm2 and target thickness 30 nm (solid curves). The
leftmost panel shows the ion energy spectrum at time
tωpe = 8760, when the beam has broken into a
sequence of beamlets. The solid curve in the right panel shows the very
late stage of the afterburner dynamics, where the beamlets are no longer
present and the high-energy tail of the energy spectrum has a Boltzmann
distribution with temperature TC = 540 MeV
and cut-off energy of 2 GeV. The dotted curve is from the late-time
evolution (tωpe = 59460) of a similar simulation,
also with 30 nm target thickness, but with a laser intensity
1020 W/cm2. In the lower intensity case, the ion
temperature attained is lower (TC = 190 MeV),
as is the peak ion energy (∼1 GeV). The dashed curve is from a
simulation using an identical laser drive as the simulation producing the
solid curve, but with a target thick enough (5 microns) to admit only
TNSA, this simulation exhibited a much lower beam temperature and cutoff
energy.




 This scaling indicates that an optimal target thickness exists for a
given set of laser conditions for enhanced TNSA and BOA to manifest the
highest energy, monoenergetic ion beam: If the target is too thin, the
laser burns through very early and the co-moving electron population
imparts little acceleration to the ions before the late-time BOA phase;
the resulting ion beam is neither monoenergetic nor of especially high
energy. If the target is too thick, then TNSA occurs with an ion layer of
larger areal charge density. In a manner similar to TNSA with thicker
targets (Hatchett et al., 2000;
Hegelich et al., 2006), this leads to
variation in the accelerating electric field from the front to the rear of
the ion layer and a subsequent spreading of ion energies prior to the BOA
phase.

4. DISCUSSION
 In this article, we have analyzed PIC simulations of a new process for
enhanced ion acceleration from the interaction of a petawatt-class short
pulse laser with an ultrathin target. Following a brief period of TNSA,
the enhanced acceleration has two phases: the first is an enhanced TNSA
phase, characterized by penetration of the laser pulse into the
skin-depth-thickness target, and eventual promotion of all cold electrons
to hot. The second phase is a novel laser break-out afterburner which
further promotes the ions to very high energy by the penetration of the
laser to the rear of the target and the consequent in situ
heating of the sheath electrons. In this phase, the peak longitudinal
electric field moves with the ions beyond the rear of the target. In the
simulations, when the target thickness is chosen optimally, the ions
initially accelerate as a quasi-monoenergetic beam. This process exhibits
high efficiency (4%) conversion of the incident laser energy into the
quasi-monoenergetic component. At later time, the BOA evolution breaks the
ion beam into a train of beamlets, which, ultimately, evolve into a
Boltzmann distribution with a high-temperature tail
(TC ∼ 540 MeV) and a peak carbon ion
energy of 2 GeV. These energies are approximately an order of magnitude
higher than have been achieved to date in experiments. Moreover, unlike
alternative GeV laser-driven ion acceleration techniques (Habs et
al., 2001; Esirkepov et al., 2004), these energies are attained with a much lower
laser intensity—1021 W/cm2 as opposed to
1024 W/cm2 and beyond. These laser intensities
have been realized experimentally.
 Several applications of laser-ion accelerators, such as
ion-beam-driven fast ignition inertial confinement fusion, require both
high energy and monoenergetic ion distributions (Temporal et al.,
2002), and would thus benefit from control of
the laser pulse length, with the laser drive turned off just prior to the
onset of the late-time evolution of the BOA, which ultimately destroys the
ion beam quality. Other applications, such as tumor therapy, require
instead high energy ions (∼3 GeV carbon ions for hadron therapy of
tumors (Hartmann et al., 1999)), but
substantially lower beam currents. These applications could benefit from a
longer period of late-time BOA acceleration, with an energy selector that
retains only ions within a desired energy window. At intermediate
durations of the BOA dynamics, the ion phase space evolves to a train of
quasi-monoenergetic “beamlets” of decreasing energy. These
trains of beamlets could be used, possibly, in the production of an ion
radiography “movie” from a single ion beam source.
 This work motivates a number of follow-on studies. For instance, it
would be desirable to investigate the behavior of enhanced TNSA and BOA in
multi-dimensions. One has reason to believe, however, that the essential
physics of enhanced TNSA and BOA will be preserved. Enhanced TNSA requires
depletion of the cold electrons so that the hot electrons provide the
dominant return current. In very thin targets, lateral return current
would be limited by the target geometry. Moreover, with a high contrast
ratio pulse, large density gradients would be likely at the front target
surface, so the generation of magnetic fields at the target surface would
further impede cold electron return current (Mason et al., 2005). BOA occurs when the laser breaks out of the
rear target surface and propagates with the co-moving electrons. However,
the dominant acceleration from BOA is over a distance of only a few
microns, which is much smaller than the transverse scale of the laser. 2D
simulations to explore enhanced ion acceleration from ultrathin targets
are underway and will be reported in future work.
 A second consideration is the effect of contaminants on the enhanced
acceleration process. In vacuum chambers, hydrocarbons and water
inevitably collect on the target surface and this has necessitated in
prior mid- to high-Z laser-ion acceleration experiments a need to
clean the target in order to remove these contaminants (Hegelich et
al., 2002, 2005;
Fernández et al., 2005; Flippo
et al., 2006). It is conceivable for
protons and other low-Z contaminants, by virtue of their larger
charge-to-mass ratios, to propagate far enough from the target during the
initial TNSA phase for the BOA to take place in an essentially
“self-cleaned” layer. This hypothesis requires
verification.
 Finally, it will prove useful to examine how the enhanced acceleration
physics is modified as a function of laser energy and intensity. Initial
simulation studies using a finite-duration (500 fs) laser pulse with
intensity 1020 W/cm2 and a target of thickness
30 nm (not necessarily the optimal thickness for these laser parameters)
show that enhanced TNSA and the BOA processes indeed still occur, but with
degradation of ion beam quality, lower energy in the monoenergetic beam,
and a longer interval of time before the BOA operates. Interestingly, with
the less intense laser drive, the late-stages of the BOA still produce GeV
carbon ions, as shown in the dashed curve in Figure
7.
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View in content
 

  Electric field and ion momentum during the TNSA phase of the ion acceleration for a simulation in which the target is a carbon foil of thickness 30 nm and the peak laser intensity is 1021 W/cm2. The left panel shows the longitudinal (Ex) component of the electric field (black curve). The field exhibits a ponderomotive region at the front surface (the peak located at 19.5 microns) and a modest sheath field (x > 20.5 microns) at the rear target surface. This sheath provides the TNSA. The laser field (arb. units) is shown in red. In the right panel, ion momentum vs. position are shown.

 

 


View in content
 

  Electric field and ion momentum during the enhanced TNSA phase of the same simulation shown in Fig. 1. The skin depth within the target has become comparable in size to the target thickness. The ponderomotive force imparted by the laser field (Ey: red curve, upper panel, in arb. units) augments the sheath field on the rear target surface (Ex: black curve, upper panel) and produces a period of enhanced ion acceleration (bottom panel).

 

 


View in content
 

  Laser field (top left) and electron phase space (bottom left) over the entire simulation domain during the break-out afterburner phase of the same simulation as shown in Fig. 1. The top-right panel is a blow-up of longitudinal (black) and transverse (red, arb. units) electric fields in the region near the ion layer. The bottom-right panel shows ion momentum vs. position.

 

 


View in content
 

  A comparison of longitudinal electric field for the three times shown in Figures 1 (black), 2 (green), and 3 (red). During the period when the break-out afterburner is operative, the longitudinal electric field is much larger than the early-time TNSA field and the peak field co-moves with the ions. This large electric field is responsible for the dramatic enhancement in ion acceleration.

 

 


View in content
 

  Late-time evolution of the laser break-out afterburner for the same simulation as shown in Fig. 1. As the laser penetrates the foil, the quasi-monoenergetic ion beam breaks up into a sequence of beamlets of decreasing energy. The most energetic ions continue to be accelerated to yet higher energy as this phase of the afterburner evolves. At the time shown, the most energetic ions have energy 700 MeV.

 

 


View in content
 

  Scaling of maximum energy of monoenergetic C6+ ion beam as a function of target thickness from PIC simulations at intensity I = 1021 W/cm2. The target of thickness 30 nm yields the highest energy monoenergetic beam.

 

 


View in content
 

  Energy spectra obtained for two times during the later stages of the break-out afterburner for intensity I = 1021 W/cm2 and target thickness 30 nm (solid curves). The leftmost panel shows the ion energy spectrum at time tωpe = 8760, when the beam has broken into a sequence of beamlets. The solid curve in the right panel shows the very late stage of the afterburner dynamics, where the beamlets are no longer present and the high-energy tail of the energy spectrum has a Boltzmann distribution with temperature TC = 540 MeV and cut-off energy of 2 GeV. The dotted curve is from the late-time evolution (tωpe = 59460) of a similar simulation, also with 30 nm target thickness, but with a laser intensity 1020 W/cm2. In the lower intensity case, the ion temperature attained is lower (TC = 190 MeV), as is the peak ion energy (∼1 GeV). The dashed curve is from a simulation using an identical laser drive as the simulation producing the solid curve, but with a target thick enough (5 microns) to admit only TNSA, this simulation exhibited a much lower beam temperature and cutoff energy.
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