Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-28T13:49:17.540Z Has data issue: false hasContentIssue false

First results of the ORGANIC experiment on EXPOSE-R on the ISS

Published online by Cambridge University Press:  25 November 2014

K.L. Bryson*
Affiliation:
Space Science and Astrobiology Division, NASA Ames Research Center, Moffett Field, CA 94035, USA Bay Area Environmental Research Institute, 625 2nd St, Ste. 209, Petaluma, CA 94952, USA
F. Salama
Affiliation:
Space Science and Astrobiology Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
A. Elsaesser
Affiliation:
Leiden Institute of Chemistry, P.O. Box 9502, 2300 RA Leiden, The Netherlands
Z. Peeters
Affiliation:
Department of Terrestrial Magnetism, Carnegie Institute of Washington, 5241 Broad Branch Rd, Washington DC 20015, USA
A.J. Ricco
Affiliation:
Small Spacecraft Payloads and Technologies, NASA Ames Research Center, Moffett Field, CA 94035, USA
B.H. Foing
Affiliation:
European Space Agency, ESTEC, 2200 AG Noordwijk, The Netherlands
Y. Goreva
Affiliation:
Department of Mineral Sciences, Smithsonian Institution, Washington, DC 20013-7012, USA

Abstract

The ORGANIC experiment on EXPOSE-R spent 682 days outside the International Space Station, providing continuous exposure to the cosmic-, solar- and trapped-particle radiation background for fourteen samples: 11 polycyclic aromatic hydrocarbons (PAHs) and three fullerenes. The thin films of the ORGANIC experiment received, during space exposure, an irradiation dose of the order of 14 000 MJ m−2 over 2900 h of unshadowed solar illumination. Extensive analyses were performed on the returned samples and the results compared to ground control measurements. Analytical studies of the returned samples included spectral measurements from the vacuum ultraviolet to the infrared range and time-of-flight secondary ion mass spectrometry. Limited spectral changes were observed in most cases pointing to the stability of PAHs and fullerenes under space exposure conditions. Furthermore, the results of these experiments confirm the known trend in the stability of PAH species according to molecular structure: compact PAHs are more stable than non-compact PAHs, which are themselves more stable than PAHs containing heteroatoms, the last category being the most prone to degradation in the space environment. We estimate a depletion rate of the order of 85 ± 5% over the 17 equivalent weeks of continuous unshadowed solar exposure in the most extreme case tetracene (smallest, non-compact PAH sample). The insignificant spectral changes (below 10%) measured for solid films of large or compact PAHs and fullerenes indicate a high stability under the range of space exposure conditions investigated on EXPOSE-R.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allain, T., Leach, S. & Sedlmayr, E. (1996a). Photodestruction of PAHs in the interstellar medium. I. Photodissociation rates for the loss of an acetylenic group. Astron. Astrophys. 305, 602615.Google Scholar
Allain, T., Leach, S. & Sedlmayr, E. (1996b). Photodestruction of PAHs in the interstellar medium. II. Influence of the states of ionization and hydrogenation. Astron. Astrophys. 305, 616630.Google Scholar
Allamandola, L.J., Hudgins, D.M. & Sandford, S.A. (1999). Modeling the unidentified infrared emission with combinations of polycyclic aromatic hydrocarbons. Astrophys. J. 511, 115119.Google Scholar
Bernard-Salas, J., Cami, J., Peeters, E., Jones, A.P., Micelotta, E.R. & Groenewegen, M.A.T. (2012). On the excitation and formation of circumstellar fullerenes. Astrophys. J. 757, 4151.CrossRefGoogle Scholar
Boersma, C., Bauschlicher, C.W. Jr., Ricca, A., Mattioda, A.L., Cami, J., Peeters, E., Sánchez de Armas, F., Puerta Saborido, G., Hudgins, D.M. & Allamandola, L.J. (2013). The NASA Ames PAH IR Spectroscopic database version 2.00: updated content, website and on/offline tools. Astrophys. J. Suppl. 211(1), 820.CrossRefGoogle Scholar
Bryson, K.L., Peeters, Z., Salama, F., Foing, B., Ehrenfreund, P., Ricco, A.J., Jessberger, E., Bischoff, A., Breitfellner, M., Schmidt, W., Robert, F. (2011). The ORGANIC experiment on EXPOSE-R on the ISS: flight sample preparation and ground control spectroscopy. Adv. Space Res. 48, 19801996.Google Scholar
Cami, J., Bernard-Salas, J., Peeters, E. & Malek, S.E. (2010). Detection of C60 and C70 in a Young Planetary Nebula. Science 329(5996), 11801182.Google Scholar
Cataldo, F. (2004). From elemental carbon to complex macromolecular networks in space. In Astrobiology: Future Perspectives, ed. Ehrenfreund, et al. , pp. 97126. Astrophysics and Space Science Library 305, Kluwer Academic Publishers, Dordrecht.Google Scholar
Cherchneff, I. (2011). In EAS Publications Series, Vol. 46, PAHs and the Universe, ed. Joblin, C. & Tielens, A.G.G.M., Cambridge: Cambridge University Press.Google Scholar
Contreras, C. & Salama, F. (2013). Laboratory investigations of polycyclic aromatic hydrocarbon formation and destruction in the circumstellar outflows of carbon stars. Astrophys. J. Suppl. 208, 622.CrossRefGoogle Scholar
Cottin, H., Saiagh, K., Cloix, M., Cloix, M., Khalaf, D., Macari, F., Jérome, M., Polienor, J.-M., Bénilan, Y., Coll, P. et al. (2014). The AMINO Experiment: a laboratory for Astrochemistry and Astrobiology on the EXPOSE-R facility of the International Space Station. Int. J. Astrobiol., 13(5).Google Scholar
Cruikshank, D.P., Wegryn, E., Dalle Ore, C.M., Brown, R.H., Bibring, J.-P., Buratti, B.J., Clark, R.N., McCord, T.B., Nicholson, P.D., Pendleton, Y.J. et al. (2008). Hydrocarbons on Saturn's satellites Iapetus and Phoebe. Icarus 193, 334343.CrossRefGoogle Scholar
Demets, R., Bertrand, M., Bolkhovitinov, A., Bryson, K., Colas, C., Cottin, H., Dettmann, J., Ehrenfreund, P., Elsaesser, A., Jaramillo, E. et al. (2014). Window contamination on Expose-R. Int. J. Astrobiol., 13(5).Google Scholar
Ehrenfreund, P. & Foing, B.H. (2010). Fullerenes and cosmic carbon. Science 329(5996), 11591160.CrossRefGoogle ScholarPubMed
Ehrenfreund, P., Foing, B.H., d'Hendecourt, L., Jenniskens, P. & Desert, F.-X. (1995). Search for coronene and ovalene cations in the diffuse interstellar medium. Astron. Astrophys. 299, 213221.Google Scholar
Ehrenfreund, P., Ruiterkamp, R., Peeters, Z., Foing, B., Salama, F. & Martins, Z. (2007). The ORGANICS experiment on BIOPAN V: UV and space exposure of aromatic compounds. PSS 55, 383400.Google Scholar
Foing, B.H. & Ehrenfreund, P. (1994). Detection of two interstellar absorption bands coincident with spectral features of C60 + . Nature 369, 296298.Google Scholar
Foing, B.H. & Ehrenfreund, P. (1997). New evidences for interstellar C60 + . Astron. Astrophys. 317, 5962.Google Scholar
Galazutdinov, G.A., Krełowski, J., Musaev, F.A., Ehrenfreund, P. & Foing, B.H. (2000). On the identification of the C60 + interstellar features. Mon. Not. R. Astron. Soc. 317, 750758.Google Scholar
Guan, Y.Y., Fray, N., Coll, P., Macari, F., Chaput, D., Raulin, F. & Cottin, H. (2010). UVolution: compared photochemistry of prebiotic organic compounds in low Earth orbit and in the laboratory. Planet. Space Sci. 58, 13271346.CrossRefGoogle Scholar
Gutman, I. & Cyvin, S.J. (1989). Extraterrestrial Benzenoid Hydrocarbons In Introduction to the Theory of Benzenoid Hydrocarbons, ed. Gutman, I. & Cyvin, I., Springer, Heidelberg, 93–116.Google Scholar
Hudgins Sandford (1998). Infrared spectroscopy of matrix isolated polycyclic aromatic hydrocarbons. 1. PAHs containing two to four rings. J. Phys. Chem. 102, 329343.Google Scholar
Jäger, C., Mutschke, H., Llamas-Jansa, I., Henning, T. & Huisken, F. (2008). Laboratory analogs of carbonaceous matter: soot and its precursors and by-products. Proc. IAU Symp. 251, 425432.Google Scholar
Jäger, C., Huisken, F., Mutschke, H., Llamas Jansa, I. & Henning, T. (2009). Formation of polycyclic aromatic hydrocarbons and carbonaceous solids in gas-phase condensation experiments. Astrophys. J. 696, 706712.Google Scholar
Jochims, H.W., Ruhl, E., Baumgartel, H., Tobita, S. & Leach, S. (1994). Size effects on dissociation rates of polycyclic aromatic hydrocarbon cations: laboratory studies and astrophysical implications. Astrophys. J. 420, 307317.CrossRefGoogle Scholar
Keller, L.P., Bajt, S., Baratta, G.A., Borg, J., Bradley, J.P., Brownlee, D.E., Busemann, H., Brucato, J.R., Burchell, M., Colangeli, L. et al. (2006). Infrared spectroscopy of comet 81P/Wild 2 samples returned by stardust. Science 314, 17281731.Google Scholar
Lebedkin, S., Hull, W.E., Soldatov, A., Renker, B. & Kappes, M.M. (2000). Structure and properties of the Fullerene Dimer C140 produced by pressure treatment of C70 . J. Phys. Chem. B 104, 41014110.CrossRefGoogle Scholar
Leger, A. & d'Hendecourt, L. (1985). Are polycyclic aromatic hydrocarbons the carriers of the diffuse interstellar bands in the visible? Astron. Astrophys. 146, 8185.Google Scholar
Le Page, V., Snow, T.P. & Bierbaum, V.M. (2001). Hydrogenation and Charge States of PAHS in Diffuse Clouds. I. Development of a Model. Astrophys. J. Suppl. 132(2), 233251.Google Scholar
Malloci, G., Mulas, G. & Joblin, C. (2004). Electronic absorption spectra of PAHs up to vacuum UV: towards a detailed model of interstellar PAH photophysics. Astron. Astrophys. 426, 105117.CrossRefGoogle Scholar
Malloci, G., Mulas, G., Cecchi-Pestellini, C. & Joblin, C. (2008). Dehydrogenated polycyclic aromatic hydrocarbons and UV bump. Astron. Astrophys. 489, 11831187.Google Scholar
Mattioda, A.L., Bauschlicher, C.W. Jr., Bregman, J.D., Hudgins, D.M., Allamandola, L.J. & Ricca, A. (2014). Infrared vibrational and electronic transitions in the dibenzopolyacene family. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 130, 639652.CrossRefGoogle ScholarPubMed
Miles, A.J., Hoffmann, S.V., Tao, Y., Janes, R.W. & Wallace, B.A. (2007). Synchrotron radiation circular dichroism (SRCD) spectroscopy: new beamlines and new applications in biology. Spectroscopy 21, 245255.Google Scholar
Miles, A.J., Janes, R.W., Brown, A., Clarke, D.T., Sutherland, J.C., Tao, Y., Wallace, B.A. & Hoffmann, S.V. (2008). Light flux density threshold at which protein denaturation is induced by synchrotron radiation circular dichroism beamlines. J. Synchrotron Radiat. 15, 420–244.CrossRefGoogle ScholarPubMed
Montillaud, J., Joblin, C. & Toublanc, D. (2013). Evolution of polycyclic aromatic hydrocarbons in photodissociation regions Hydrogenation and charge states. Astron. Astrophys. 552, A15.Google Scholar
Pascoli, G. & Polleux, A. (2000). Condensation and growth of hydrogenated carbon clusters in carbon-rich stars. Astron. Astrophys. 359, 799.Google Scholar
Pullman, A. & Pullman, B. (1955). Electronic structure and carcinogenic activity of aromatic molecules: new developments. Adv. Cancer Res. 3, 117169.CrossRefGoogle ScholarPubMed
Rabbow, E., Rettberg, P., Barczyk, S., Bohmeier, M., Parpart, A., Panitz, C., Horneck, G., Burfeindt, J., Molter, F., Jaramillo, E. et al. (2014). The astrobiological mission EXPOSE-R on board of the International Space Station. Int. J. Astrobiol., this issue.Google Scholar
Ruiterkamp, R., Cox, N.L.J., Spaans, M., Kaper, L., Foing, B. H., Salama, F. & Ehrenfreund, P. (2005). PAH charge state distribution and DIB carriers: Implications from the line of sight toward HD 147889. Astron. Astrophys. 432, 515529.Google Scholar
Salama, F. (2008). PAHs in astronomy. A review. In Organic Matter in Space Proceedings, ed. Kwok, S. & Sandford, S., IAU Symposium 251, pp. 357365.Google Scholar
Salama, F., Bakes, E.L.O., Allamandola, L.J. & Tielens, A.G.G.M. (1996). Assessment of the polycyclic aromatic hydrocarbon—diffuse interstellar band proposal. Astrophys. J. 458, 621636.Google Scholar
Sandford, S.A., Bajt, S., Clemett, S.J., Cody, G.D., Cooper, G., Degregorio, B.T., De Vera, V., Dworkin, J.P., Elsila, J.E., Flynn, G.J. et al. (2010). Assessment and control of organic and other contaminants associated with the Stardust sample return from comet 81P/Wild 2. Meteoritics 45, 406433.Google Scholar
Schettino, V., Pagliai, M. & Cardini, G. (2002). the infrared and raman spectra of fullerene C70. DFT calculations and correlation with C60 . J. Phys. Chem. A 106, 18151823.Google Scholar
Sellgren, K., Werner, M., Ingalls, J., Smith, J.D.T., Carleton, T.M. & Joblin, C. (2010). C60 in reflection nebulae. Astrophys. J. Lett. 722, L54L57.Google Scholar
Sephton, M.A., Phillinger, C.T. & Gilmour, I. (1998). δ13C of free and macromolecular aromatic structures in the murchison meteorite. Geochim. Cosmochim. Acta 62, 18211828.CrossRefGoogle Scholar
Sonnentrucker, P., Cami, J., Ehrenfreund, P. & Foing, B.H. (1997). The diffuse interstellar bands at 5797, 6379 and 6613 Angstroms. Ionization properties of the carriers. Astron. Astrophys. 327, 12151221.Google Scholar
Tielens, A.G.G.M. (2008). Interstellar polycyclic aromatic hydrocarbon molecules. Annu. Rev. Astron. Astrophys. 46, 289337.Google Scholar
Vuong, M.H. & Foing, B.H. (2000). Dehydrogenation of polycyclic aromatic hydrocarbons in the diffuse interstellar medium. Astron. Astrophys. 363, L5L8.Google Scholar
Supplementary material: File

Bryson Supplementary Material

Figures

Download Bryson Supplementary Material(File)
File 1.5 MB