Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T23:50:51.627Z Has data issue: false hasContentIssue false

A STUDY OF UNIFORM ONE-SIDED IDEALS IN SIMPLE RINGS

Published online by Cambridge University Press:  01 September 2007

JOHN CLARK
Affiliation:
Department of Mathematics and Statistics, University of Otago, PO Box 56, Dunedin, New Zealand e-mail: jclark@maths.otago.ac.nz
DINH VAN HUYNH
Affiliation:
Department of Mathematics, Ohio University, Athens, Ohio 45701, USA e-mail: huynh@math.ohiou.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Using a variation on the concept of a CS module, we describe exactly when a simple ring is isomorphic to a ring of matrices over a Bézout domain. Our techniques are then applied to characterise simple rings which are right and left Goldie, right and left semihereditary.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2007

References

REFERENCES

1.Anderson, F. W. and Fuller, K. R., Rings and categories of modules, Second edition (Springer-Verlag, 1992).CrossRefGoogle Scholar
2.Camillo, V. P. and Cozzens, J., A theorem on Noetherian hereditary rings, Pacific J. Math. 45 (1973), 3541.CrossRefGoogle Scholar
3.Chatters, A. W. and Hajarnavis, C. R., Rings in which every complement right ideal is a direct summand, Quart. J. Math. Oxford Ser. (2) 28 (1977), 6180.CrossRefGoogle Scholar
4.Clark, J. and Wisbauer, R., Σ-extending modules, J. Pure Appl. Algebra 104 (1995), 1932.CrossRefGoogle Scholar
5.Cohn, P. M., Free rings and their relations, Second edition (Academic Press, 1985).Google Scholar
6.Cohn, P. M., Right principal Bezout domains, J. London Math. Soc. (2) 35 (1987), 251262.CrossRefGoogle Scholar
7.Cohn, P. M. and Schofield, A. H., Two examples of principal ideal domains, Bull. London Math. Soc. 2 (1985), 2528.CrossRefGoogle Scholar
8.Cozzens, J. and Faith, C., Simple Noetherian rings (Cambridge Univ. Press, 1975).CrossRefGoogle Scholar
9.Dung, N. V., Huynh, D. V., Smith, P. F. and Wisbauer, R., Extending modules (Longman Scientific & Technical, Harlow, 1994).Google Scholar
10.Goodearl, K. R., Von Neumann regular rings, Second Edition (Krieger Publishing Company, Malabar, 1991).Google Scholar
11.Hanada, K., Kuratomi, Y. and Oshiro, K., On direct sums of extending modules and internal exchange property, J. Algebra 250 (2002), 115133.CrossRefGoogle Scholar
12.Hart, R., Simple rings with uniform right ideals, J. London Math. Soc. 42 (1967), 614617.CrossRefGoogle Scholar
13.Huynh, D. V., Jain, S. K. and López-Permouth, S. R., On the symmetry of the Goldie and CS conditions for prime rings, Proc. Amer. Math. Soc. 128 (2000), 31533157.CrossRefGoogle Scholar
14.Huynh, D. V., Jain, S. K. and López-Permouth, S. R., Prime Goldie rings of uniform dimension at least two and with all one-sided ideals CS are semihereditary, Comm. Algebra 31 (2003), 53555360.CrossRefGoogle Scholar
15.Mc Connell, J. C. and Robson, J. C., Noncommutative noetherian rings (Wiley, 1987).Google Scholar
16.Mohamed, S. H. and Müller, B. J., Continuous and discrete modules (Cambridge University. Press, 1990).CrossRefGoogle Scholar
17.Small, L. W., Semihereditary rings, Bull. Amer. Math. Soc. 73 (1967), 656658.CrossRefGoogle Scholar