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  Abstract
  Strong interactions of shock waves with boundary layers lead to flow separations and enhanced heat transfer rates. When the approaching boundary layer is hypersonic and transitional the problem is particularly challenging and more reliable data is required in order to assess changes in the flow and the surface heat transfer, and to develop simplified models. The present contribution compares results for transitional interactions on a flat plate at Mach 6 from three different experimental facilities using the same instrumented plate insert. The facilities consist of a Ludwieg tube (RWG), an open-jet wind tunnel (H2K) and a high-enthalpy free-piston-driven reflected shock tunnel (HEG). The experimental measurements include shadowgraph and infrared thermography as well as heat transfer and pressure sensors. Direct numerical simulations (DNS) are carried out to compare with selected experimental flow conditions. The combined approach allows an assessment of the effects of unit Reynolds number, disturbance amplitude, shock impingement location and wall cooling. Measures of intermittency are proposed based on wall heat flux, allowing the peak Stanton number in the reattachment regime to be mapped over a range of intermittency states of the approaching boundary layer, with higher overshoots found for transitional interactions compared with fully turbulent interactions. The transition process is found to develop from second (Mack) mode instabilities superimposed on streamwise streaks.
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