Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T03:49:43.859Z Has data issue: false hasContentIssue false

Pinning of rotating waves to defects in finite Taylor–Couette flow

Published online by Cambridge University Press:  19 October 2010

J. R. PACHECO
Affiliation:
School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287, USA Environmental Fluid Dynamics Laboratories, Department of Civil Engineering and Geological Sciences, The University of Notre Dame, South Bend, IN 46556, USA
J. M. LOPEZ*
Affiliation:
School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287, USA
F. MARQUES
Affiliation:
Departament de Física Aplicada, Universidad Politècnica de Catalunya, Barcelona 08034, Spain
*
Email address for correspondence: lopez@math.la.asu.edu

Abstract

Experiments in small aspect-ratio Taylor–Couette flows have reported the presence of a band in parameter space where rotating waves become steady non-axisymmetric solutions (a pinning effect) via infinite-period bifurcations. Previous numerical simulations were unable to reproduce these observations. Recent additional experiments suggest that the pinning effect is not intrinsic to the dynamics of the problem, but rather is an extrinsic response induced by the presence of imperfections. Here we present numerical simulations that include a small tilt of one of the endwalls, simulating the effects of imperfections that break the SO(2) axisymmetry of the problem, and indeed are able to reproduce the experimentally observed pinning of the rotating waves. Dynamical systems considerations suggest that any imperfection breaking the SO(2) axisymmetry of the problem must result in the formation of a pinning region of finite width. We have also found that the particulars of the pinning process, in particular the width of the pinning region, are extremely sensitive to the type of imperfection in the system. Almost identical flows respond in completely different ways to the same imperfection, depending on subtle differences in the weak secondary characteristics of the flow. The numerical simulations of the Navier–Stokes equations for the problem with an imposed tilt of an endwall together with normal-form analysis of a Hopf bifurcation subjected to imposed symmetry-breaking help shed some light on previous experiments that reported a variety of different dynamical behaviour for which a clear explanation was lacking.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abshagen, J., Heise, M., Hoffmann, C. & Pfister, G. 2008 a Direction reversal of a rotating wave in Taylor–Couette flow. J. Fluid Mech. 607, 199208.Google Scholar
Abshagen, J., Lopez, J. M., Marques, F. & Pfister, G. 2005 a Mode competition of rotating waves in reflection-symmetric Taylor–Couette flow. J. Fluid Mech. 540, 269299.Google Scholar
Abshagen, J., Lopez, J. M., Marques, F. & Pfister, G. 2005 b Symmetry breaking via global bifurcations of modulated rotating waves in hydrodynamics. Phys. Rev. Lett. 94, 074101.Google Scholar
Abshagen, J., Lopez, J. M., Marques, F. & Pfister, G. 2008 b Bursting dynamics due to a homoclinic cascade in Taylor–Couette flow. J. Fluid Mech. 613, 357384.CrossRefGoogle Scholar
Baer, S. M., Erneux, T. & Rinzel, J. 1989 The slow passage through a Hopf bifurcation: delay, memory effects, and resonance. SIAM J. Appl. Maths 49, 5571.CrossRefGoogle Scholar
Benjamin, T. B. 1978 a Bifurcation phenomena in steady flows of a viscous fluid. Part I. Theory. Proc. R. Soc. Lond. A 359, 126.Google Scholar
Benjamin, T. B. 1978 b Bifurcation phenomena in steady flows of a viscous fluid. Part II. Experiments. Proc. R. Soc. Lond. A 359, 2743.Google Scholar
Benjamin, T. B. & Mullin, T. 1981 Anomalous modes in the Taylor experiment. Proc. R. Soc. Lond. A 377, 221249.Google Scholar
Chossat, P. & Iooss, G. 1994 The Couette–Taylor Problem. Springer.Google Scholar
Cliffe, K. A. 1983 Numerical calculations of two-cell and single-cell Taylor flows. J. Fluid Mech. 135, 219233.Google Scholar
Courant, R., Friedrichs, K. & Lewy, H. 1928 über die partiellen differenzengleichungen der mathematischen Physik. Mathematische Annalen 100, 3274.Google Scholar
Crawford, J. D. & Knobloch, E. 1991 Symmetry and symmetry-breaking bifurcations in fluid dynamics. Annu. Rev. Fluid Mech. 23, 341387.CrossRefGoogle Scholar
Fadlun, E. A., Verzicco, R., Orlandi, P. & Mohd-Yusof, J. 2000 Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J. Comput. Phys. 161, 3560.Google Scholar
Iooss, G. & Adelmeyer, M. 1998 Topics in Bifurcation Theory and Applications, 2nd edn. World Scientific.Google Scholar
Kang, S., Iaccarino, G. & Ham, F. 2009 DNS of buoyancy-dominated turbulent flows on a bluff body using the immersed boundary method. J. Comput. Phys. 228, 31893208.Google Scholar
Knobloch, E. 1996 Symmetry and instability in rotating hydrodynamic and magnetohydrodynamic flows. Phys. Fluids 8, 14461454.Google Scholar
Kuznetsov, Y. A. 2004 Elements of Applied Bifurcation Theory, 3rd edn. Springer.CrossRefGoogle Scholar
Lopez, J. M. & Marques, F. 2009 Centrifugal effects in rotating convection: nonlinear dynamics. J. Fluid Mech. 628, 269297.Google Scholar
Lynch, R. E., Rice, J. R. & Thomas, D. H. 1964 Tensor product analysis of partial difference equations. Bull. Am. Math. Soc. 70, 378384.Google Scholar
Marques, F. & Lopez, J. M. 2006 Onset of three-dimensional unsteady states in small-aspect ratio Taylor–Couette flow. J. Fluid Mech. 561, 255277.CrossRefGoogle Scholar
Marques, F., Meseguer, A., Lopez, J. M. & Pacheco, J. R. 2010 Hopf bifurcation with zero frequency and imperfect SO(2) symmetry. Physica D (submitted).Google Scholar
Mullin, T., Toya, Y. & Tavener, S. J. 2002 Symmetry breaking and multiplicity of states in small aspect ratio Taylor–Couette flow. Phys. Fluids 14, 27782787.CrossRefGoogle Scholar
Pacheco, J. R., Pacheco-Vega, A., Rodić, T. & Peck, R. E. 2005 Numerical simulations of heat transfer and fluid flow problems using an immersed-boundary finite-volume method on non-staggered grids. Numer. Heat Transfer B 48, 124.CrossRefGoogle Scholar
Pacheco, J. R., Ruiz-Angulo, A., Zenit, R. & Verzicco, R. 2010 Fluid velocity fluctuations in a collision of a sphere with a wall. Theor. Comput. Fluid Dyn. (submitted).Google Scholar
Pacheco-Vega, A., Pacheco, J. R. & Rodić, T. 2007 A general scheme for the boundary conditions in convective and diffusive heat transfer with immersed boundary methods. J. Heat Transfer 129, 15061516.Google Scholar
Pfister, G., Buzug, T. & Enge, N. 1992 Characterization of experimental time series from Taylor–Couette flow. Physica D 58, 441454.CrossRefGoogle Scholar
Pfister, G., Schmidt, H., Cliffe, K. A. & Mullin, T. 1988 Bifurcation phenomena in Taylor–Couette flow in a very short annulus. J. Fluid Mech. 191, 118.CrossRefGoogle Scholar
Pfister, G., Schulz, A. & Lensch, B. 1991 Bifurcations and a route to chaos of an one-vortex-state in Taylor–Couette flow. Eur. J. Mech. B-Fluids 10, 247252.Google Scholar
Schaeffer, D. G. 1980 Qualitative analysis of a model for boundary effects in the Taylor problem. Math. Proc. Camb. Phil. Soc. 87, 307337.CrossRefGoogle Scholar
Stringano, G., Pascazio, G. & Verzicco, R. 2006 Turbulent thermal convection over grooved plates. J. Fluid Mech. 557, 307336.CrossRefGoogle Scholar
Strogatz, S. 1994 Nonlinear Dynamics and Chaos. Addison-Wesley.Google Scholar
Uhlmann, M. 2005 An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys. 209, 448476.CrossRefGoogle Scholar
Verzicco, R. & Orlandi, P. 1996 A finite-difference scheme for three-dimensional incompressible flows in cylindrical coordinates. J. Comput. Phys. 123, 402414.Google Scholar