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  Abstract
  Building upon the recent experimentally verified modelling of turbulent plumes which are subject to decreases in their source strength (Scase et al., J. Fluid Mech., vol. 563, 2006b, p. 443), we consider the complementary case where the plume's source strength is increased. We consider the effect of increasing the source strength of an established plume and we also compare time-dependent plume model predictions for the behaviour of a starting plume to those of Turner (J. Fluid Mech., vol. 13, 1962, p. 356).
Unlike the decreasing source strength problems considered previously, the relevant solution to the time-dependent plume equations is not a simple similarity solution. However, scaling laws are demonstrated which are shown to be applicable across a large number of orders of magnitude of source strength increase. It is shown that an established plume that is subjected to an increase in its source strength supports a self-similar ‘pulse’ structure propagating upwards. For a point source plume, in pure plume balance, subjected to an increase in the source buoyancy flux F0, the rise height of this pulse in terms of time t scales as t3/4 while the vertical extent of the pulse scales as t1/4. The volume of the pulse is shown to scale as t9/4. For plumes in pure plume balance that emanate from a distributed source it is shown that the same scaling laws apply far from the source, demonstrating an analogous convergence to pure plume balance as that which is well known in steady plumes. These scaling law predictions are compared to implicit large eddy simulations of the buoyancy increase problem and are shown to be in good agreement.
We also compare the predictions of the time-dependent model to a starting plume in the limit where the source buoyancy flux is discontinuously increased from zero. The conventional model for a starting plume is well approximated by a rising turbulent, entraining, buoyant vortex ring which is fed from below by a ‘steady’ plume. However, the time-dependent plume equations have been defined for top-hat profiles assuming only horizontal entrainment. Therefore, this system cannot model either the internal dynamics of the starting plume's head or the extra entrainment of ambient fluid into the head due to the turbulent boundary of the vortex ring-like cap. We show that the lack of entrainment of ambient fluid through the head of the starting plume means that the time-dependent plume equations overestimate the rise height of a starting plume with time. However, by modifying the entrainment coefficient appropriately, we see that realistic predictions consistent with experiment can be attained.
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