Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-17T16:34:41.842Z Has data issue: false hasContentIssue false

The relationship between rumen bacterial growth, intake of dry matter, digestible organic matter and volatile fatty acid production in buffalo (Bos bubalis) calves

Published online by Cambridge University Press:  09 March 2007

U. B. Singh
Affiliation:
Division of Animal Nutrition, Indian Veterinary Research Institute, Izatnagar-243122, UP, India
D. N. Verma
Affiliation:
Division of Animal Nutrition, Indian Veterinary Research Institute, Izatnagar-243122, UP, India
A. Varma
Affiliation:
Division of Animal Nutrition, Indian Veterinary Research Institute, Izatnagar-243122, UP, India
S. K. Ranjhan
Affiliation:
Division of Animal Nutrition, Indian Veterinary Research Institute, Izatnagar-243122, UP, India
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The production rates of bacteria in the rumen of buffalo (Bos bubalis) calves were estimated using an isotope-dilution technique. A series of fifteen experiments was done with animals given green maize and nine experiments with animals given cowpea (Vigna unguiculata).

2. The turnover time ranged from 205 to 567 min in the group given green maize and from 330 to 648 min in animals offered cowpea. The production rates of bacteria were (mean±SE; g/d) 145.77±7.240 and 237.09±11.847 in animals given green maize and cowpea respectively.

3. There was a significant correlation between bacterial production rates and dry matter intake, digestible organic matter and total volatile fatty acids formed in the rumen.

4. Regression equations obtained for the two foodstuffs were different suggesting that the bacterial growth rate may vary depending upon the quantity and quality of foodstuff digested and possibly the ratio nitrogen: energy of the foodstuff.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1977

References

REFERENCES

Annison, E. F. (1974). In Tracer Studies on Non-protein Nitrogen for Ruminants, Vol. 2, p. 141. Vienna: International Atomic Energy Agency.Google Scholar
Association of Official Agricultural Chemists (1960). Official Method of Analysis, 9th ed. Washington, DC.Google Scholar
Baldwin, R. L., Lucas, H. L. & Cabrera, R. (1970). In Physiology of Digestion and Metabolism in the Ruminant, p. 319 [Phillipson, A. T. editor], Newcastle on Tyne: Oriel Press.Google Scholar
Bergen, W. G., Purser, D. B. & Cline., J. H. (1967). J. Nutr. 92, 357.Google Scholar
Chaturvedi, M. L., Singh, U. B. & Ranjhan, S. K. (1973). J. agric. Sci., Camb. 80, 393.Google Scholar
Edie, J. M. & Mann, S. O. (1970). In Physiology of Digestion and Metabolism in the Ruminant, p. 335. [Phillipson, A. T. editor], Newcastle on Tyne: Oriel Press.Google Scholar
El-Shazly, K. & Hungate, R. E. (1965). Appl. Microbiol. 13, 62.Google Scholar
Forrest, W. W. & Walker, D. J. (1971). In Advances in Microbiol Physiology, p. 213 [Wilkinson, J. N. and Rose, A. H., editors]. New York: Academic Press.Google Scholar
Harrison, D. G., Beever, D. E. & Thomson, D. J. (1972). Proc. Nutr. Soc. 31, 60A.Google Scholar
Henderickx, H. K. (1959). Diergeneesk. Tijdschr. 28, 80.Google Scholar
Henderickx, H. K. (1961). Archs int. Physiol. Biochem. 69, 449.Google Scholar
Hogan, J. P. & Weston, R. H. (1971). Aust. J. agric. Res. 22, 951.Google Scholar
Hume, I. D. (1970). Aust. J. agric. Res. 21, 297.Google Scholar
Hungate, R. E. (1966). In The Rumen and its Microbes, p. 319. New York: Academic Press.Google Scholar
Hutton, K., Bailey, F. J. & Annison, E. F. (1971). Br. J. Nutr. 25, 165.Google Scholar
Ishaque, M., Thomas, P. C. & Rook, J. A. F. (1971). Nature, New Biol. 231, 253.Google Scholar
Jackson, P., Rook, J. A. F. & Towers, K. G. (1971). J. Dairy Res. 38, 33.Google Scholar
Leng, R. A. (1972). In Chemistry and Biochemistry of Herbage [Bailey, R. W. and Butler, G. W., editors]. New York: Academic Press.Google Scholar
Mathison, G. W. & Milligan, L. P. (1971). Br. J. Nutr. 23, 585.Google Scholar
Roberts, S. A. & Miller, E. L. (1969). Proc. Nutr. Soc. 28, 32A.Google Scholar
Singh, U. B., Varma, A., Verma, D. N., Lal., M. & Ranjhan, S. K. (1973). J. agric. Sci., Camb. 81, 349.Google Scholar
Singh, U. B., Varma, A., Verma, D. N. & Ranjhan, S. K. (1974). J. Dairy Res. 41, 299.CrossRefGoogle Scholar
Singh, U. B., Verma, D. N., Varma, A. & Ranjhan, S. K. (1974 a). Indian J. Anim. Sci. 44, 89.Google Scholar
Singh, U. B., Verma, D. N., Varma, A. & Ranjhan, S. K. (1974 b). J. agric. Sci., Camb. 83, 13.Google Scholar
Singh, U. B., Verma, D. N., Varma, A. & Ranjhan, S. K. (1976). In Tracer Studies on Non-protein Nitrogen for Ruminants, Vol. 3, p. 103. Vienna: International Atomic Energy Agency.Google Scholar
Smith, R. H. (1969). J. Dairy Res. 36, 313.CrossRefGoogle Scholar
Smith, R. H. & McAllan, A. B. (1971). Br. J. Nutr. 25, 181.Google Scholar
Thomas, P. C. (1973). Proc. Nutr. Soc. 32, 85.Google Scholar
Van Nevel, C. J., Demeyer, D. I. & Henderickx, H. K. (1974). In Tracer Studies on Non-protein Nitrogen for Ruminants, Vol. 2, p. 15. Vienna: International Atomic Energy Agency.Google Scholar
Walker, D. J. & Nadar, C. J. (1968). Appl. Microbiol. 16, 1124.Google Scholar
Weller, R. A., Gray, V. F. & Pilgrim, A. F. (1958). Br. J. Nutr. 12. 421.Google Scholar