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QUADRATIC SYSTEMS WITH A WEAK FOCUS

ZHANG PINGGUANG AND CAI SUILIN

In this paper we study the number and the relative position of the limit cycles of a
plane quadratic system with a weak focus. In particular, we prove the limit cycles
of such a system can never have (2, 2)-distribution, and that there is at most
one limit cycle not surrounding this weak focus under any one of the following
conditions:

(i) the system has at least 2 saddles in the finite plane,
(ii) the system has more than 2 finite singular points and more than 1 sin-

gular point at infinity,
(iii) the system has exactly 2 finite singular points, more than 1 singular point

at infinity, and the weak focus is itself surrounded by at least one limit
cycle.

1. INTRODUCTION

This paper discusses quadratic systems with a weak focus and a strong focus.
Without loss of generality, we may suppose that 0(0, 0) is the strong focus and N(0, 1)
the weak focus. Then, by [6], the quadratic system can be written in the form

dx/dt = —y — mx + lx2 -f mxy + y2,

dy/dt = x(l + ax+by).

If m = 0 then JV(O, 1) and 0(0, 0) are both weak foci (or centres), and (1) has

no limit cycle. Therefore

(2) 0 < | m | < 2 , 6 + K O .

Without loss of generality we can suppose

(3) a > 0.
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In fact, if a = 0 then (1) has no limit cycle [2], and if a < 0 then by the change of
variables t —> — t, x —* —x we obtain a > 0. In the following we always suppose that
(2) and (3) are satisfied when we discuss (1).

Except N and O, the coordinates (x, y) of the other finite singular points of (1)
are determined by the following equations:

(4) {lb2 + a2 - abm)x2 + [a{b+ 2) - mb{b + l))x +6 + 1 = 0,

(5) y = -(1 + ax)/b.

The discriminant of (4) is 62A, where

(6) A : = [ a - m ( 6 + l ) ] 2 - 4 Z ( 6 + l).

The following results, which we state as lemmas, are proved in [8].

LEMMA 1. If ma(b + 21) > 0 or a — mb ^ 0, then (1) has no limit cycle sur-

rounding O.

LEMMA 2 . 1/ M < 0, or if ro > 0 and lb2 + a2 - abm > 0, then (1) has at most
one limit cycle surrounding O.

In order to consider the infinite singular points of (1), let

(7) v - x/y, z = 1/y, dt/dr = z.

Then (1) becomes

dzjdr = —z(yz + av2 + fru),

dv/dr = -av3 - (b - l)v2 + mv + 1 + z(-v2 -mv- l ) .

Thus z = 0, v = A is an infinite singular point if and only if A satisfies the equation

(9) <p{\) := oA3 + (6 - Z)A2 - m\ - 1 = 0.

LEMMA 3 . Suppose m > 0 and put

(10) Ao := 4am3 + (6 - /)2m2 + 18a(6 - l)m - 27a2 + 4(6 - I)3.

If Ao > 0 then (9) has three real roots X3 < A2 < 0 < Ai and <p'(As) > 0. If Ao = 0

then (9) has a simple real root Ai > 0, a double real root A2 = As < 0 and y'(Aj) = 0.

If Ao < 0 then (9) has a unique real root Aj and Ai > 0. In all cases we have

PROOF: By elementary algebra, (10) is the discriminant of (9). Since y>(0) = —1,
y>(+oo) = +00, the cubic equation (9) has a real root Ai > 0. If Ao < 0 then Ai is the
unique real root of (9). If Ao > 0 then, since <p'(0) = —m < 0, the other two real roots
are negative. Similarly if Ao = 0 the double root is negative. The rest of the lemma is
obvious.
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2. MAIN RESULTS

Lemma 2 can be given a more geometrical equivalent form. It follows from (4)
that lb2 + a2 — abm > 0 if and only if (1) has four finite singular points which form
a convex quadrilateral. If TO < 0 and (1) has a limit cycle surrounding O then, by
Lemma 1, a - mb > 0 and 6 + 2/ > 0, hence I > 0. Therefore lb2 + a2 - abm > 0.
By Berlinskii's Theorem [7], this is equivalent to assuming that the system (1) has two
saddles in addition to the two foci. Thus, by Lemma 2, we have

THEOREM A. Suppose a quadratic system has 4 finite singular points: a strong
focus, a weak focus, and two saddles. Then the system has at most one limit cycle
surrounding the strong focus.

This paper will discuss the remaining case of a quadratic system with a strong
focus, a weak focus and at most one saddle. That is, we consider the system (1) when,
in addition to (2) and (3), we also have

(11) TO > 0, lb2 + o2 - abm < 0.

Suppose A is a real root of (9), and let

(12) h(£) = (A2 + TOA -f l) - (-2aA2 + 21X - 6A + m)f.

Then, by (9), we have

(13) (-2aA2 + 2/A - bX + m)\ = (1 + b)\2 - (A2 + TOA + l) - 1 < 0.

Thus the coefficient of ( in (12) is nonzero and h[x — Ay) = 0 represents a line. Since

( A + m A + l) (6 + l ) A l
A(-2aA2 + 2/A - bX + TO) A(-2aA2 + 2/A - 6A + TO) '

the intersection point of the line h(x — Xy) = 0 and the y-axis is between N and 0.
Let

(14) D := {(x, y) | h(x - Xy) > 0}

be the closed half-plane bounded by this line which contains the origin. In this paper
we prove the following results, which deal with four possible situations.

THEOREM 1 . Suppose (1) satisfies (11) and Ao < 0. If in D, besides the singular
point O, there is at least one finite singular point of (1) (this singular point cannot be
N), then (1) has at most one limit cycle surrounding the strong focus O.

THEOREM 2 . Suppose (1) satisfies (11) and Ao < 0. If in D, besides the singular

point O, there is no finite singular point of (1), then (1) has an odd number of Hmit
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cycles surrounding the strong focus O (a cycle of multiplicity k being counted as k

cycles).

THEOREM 3 . Suppose (1) satisfies (11) and Ao ^ 0, A ^ 0. Then (1) has at

most one limit cycle surrounding the strong focus O.

THEOREM 4 . Suppose (1) satisfies (11) and Ao ^ 0, A < 0. Tien, if there is a

Hmit cycle surrounding the weak focus, there is at most one Umit cycle surrounding the

strong focus.

Since any limit cycle of a quadratic system surrounds a focus, Theorem A corre-
sponds to condition (i) in the Abstract, and it follows from Lemma 3 that Theorem 3,
in conjunction with Lemma 2, corresponds to (ii). Similarly, Theorem 4 in conjunction
with Lemma 2 corresponds to (iii).

In [4] the authors study quadratic systems with a 3rd-order weak focus and a
unique, simple infinite singular point (which implies that there are exactly two finite
singular points, the second being a strong focus). Our Theorems 1 and 2 also deal with
the case of a unique infinite singular point. However, besides a weak focus and a strong
focus, the system may have other finite singular points, the weak focus need not be of
3rd-order, and the unique infinite singular point need not be simple. Thus Theorems 1
and 2 in this paper considerably extend the statement in [4] concerning the number of
limit cycles surrounding the strong focus.

In [5] the authors study some quadratic systems with two finite singular points —
a weak focus and a strong focus — and three infinite singular points. Theorem 4 of this
paper provides additional information about the distribution of limit cycles of such a
system.

The limit cycles of a quadratic system are said to have (i, j)-distribution if there
are exactly i limit cycles surrounding one focus and exactly j limit cycles surrounding
another focus (multiple limit cycles being counted according to their multiplicity).

It follows at once from Lemma 2 and Theorems 1 — 4 that if a quadratic system
with a weak focus and a strong focus has more than one limit cycle surrounding the
strong focus, then either the number of such limit cycles is odd or there is no limit cycle
surrounding the weak focus. In particular,

THEOREM 5 . If a quadratic system has a weak focus and a strong focus, its limit

cycles cannot have (2, 2) distribution.

3. PROOFS OF THE THEOREMS

First of all we introduce the following lemmas.

LEMMA 4. Suppose the system

(15) dx/dt = y - F{x), dy/dt = -g(x)
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satisfies the following conditions:

(i) g(x) G C 1 and F(x) G C2 tor x G (x02, *oi)> where xO2 < 0 < xOi ;
(ii) xg{x) > 0 for x G (*02» *oi) and x ^ 0;

(iii) there exists an Xo, with zO2 < xo < 0, such that f(x) < 0 for x G

(*02, *o) and f(x) > 0 for x G (x0, *oi), where / ( x ) = -F'(x);

(iv) [f(x)/g(x)}' < 0 for x G (x0 2 ) x0) and x G (0, xOi) .

Tiien the system (15) has at most one limit cycle in the strip

D\ :— {(x, y) | x02 < x < xOi, - o o < y < +oo}.

If it exists, it must be an unstable cycle.

This lemma follows from Theorem 6.4 of [7] and also from Theorem 1 of [3].
Moreover, the last Theorem shows that if a limit cycle exists, it must have a positive
characteristic exponent.

LEMMA 5 . Suppose (15) satisfies conditions (i) and (ii) in Lemma 4, and in ad-

dition ( /(x) = F'(x))

(iii)' /(0) = <W(0)>0;

(iv)' [f(x)/g[x)]' > 0 (or < 0) for x G (x02, 0) U (0, xOi) .

Then (15) has no limit cycle entirely contained in the strip D\.

PROOF: If (15) has a limit cycle entirely contained in D\ then, by Filippov's
transformation — see Theorem 5.4 of [7] — the simultaneous equations

F(Xl) = F(x2), G(Xl) = G(x2),

where G(x) — J* g{£)d£, have a solution with xo2 < x2 < 0 and 0 < x\ < xoi. For
each x with 0 ^ x ^ X\ there is a unique x' = <p(x) with x2 ^ x' ^ 0 such that
G[y>(x)] = G(x). Evidently <f(x) is a decreasing function with <p(0) = 0, <p(x\) =

<p(x2). Since the function ij)(x) = F[<p(x)] — F(x) vanishes for x = 0 and x = x\, its
derivative vanishes at a point £i G (0, Xi). Since f'{x) — g{x)/g[<p{x)}, it follows that

Thus the simultaneous equations

have a solution with x2 < £2 < 0, 0 < £i < x\. But (iii)' implies that f(x)/g[x)

has a finite limit as x —» 0. Consequently, by a similar argument, the derivative of the
function

fl<p(x)}/g[<p(x)}-f(x)/g(x)
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vanishes at a point 771 £ (0, £1). Thus, putting rj2 = <p(vi)> w e obtain

Since <P'(T]I) < 0, and, by (iv)', (f/gYfa) has the same sign as (f/g) (771), this is a
contradiction. The proof is complete. D

LEMMA 6. If A is a real root of (9), then

(16) lb2 + a2 - abm = {aX +b)(b2X2 + aX - mbX - b)/X2.

Moreover, if m > 0 and lb2 + a2 — abm ^ 0, then

(17) (m + 2lX-aX2)X < 0.

PROOF: Using (9), we obtain the left side of (16) from the right side by direct
calculation. In addition, it is clear that / < 0 if m > 0 and lb2 + a2 — abm < 0.
Therefore, by (9) we have

(m + 2/A - aX2)\ = (b + l)X2 - 1 < 0.

The proof is complete. D

PROOF OF THEOREM 1: Take X = Ai > 0, where Ai is defined as in Lemma 3.
(For simplicity Ai is rewritten as A in the proofs of Theorems 1 and 2.) Putting

(18) £ = x - Ay, 77 = y,

(1) is changed into

dt/dt = -(m + A)£ + (/ - aX)e
(iy)

dn/dt = U + Ai/)[1 + a£ + (oA + 6)77],
where h(£) is defined as in (12). If h(£) = 0 we have, by (13),

(20) £ = C := (A2 +mX + l)/(-2aA2 + 2/A -bX + m) <0.

The region D in the (x, j/)-plane (see (14)) becomes the region h(£) ^ 0 in the
(£> 77)-plane, namely

(14)' D':={(t,7,)\(>n-

In the (£, 77) coordinate system, the coordinates of the weak focus N are (—A, 1).
Since N £ D, we have —A < £*. Moreover, since

(21) d£lit \i=c = [(1 + 6)A2 - 1]C/A2 (-2aA2 + 2/A -bX+m) <0,
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the vertical line £ = £* is a line without contact, there is no finite singular point on it,
and a trajectory of (19) which intersects this line must cross it from right to left (thus
leaving D').

Furthermore, we use the transformations (see Theorem 15.15 in [7]):

(22) m (Tn + X)t + (la\)£h(t)r,, x = fc

i»=i&|l-*/i,*P, x = x, dr/dt=\l-x/C\~\

where

(23) 7 = (m + 2/A - aA2)/(2aA2 - 2ZA + bX - m) < 0,

by (13) and (17). If t represents r again, then (19) is changed into

(24) dx/dt = 7/2, d-mjdt = -g{x) - f(x)m,

where

/ i (x) = m(A2 + mX + l ) - (b + 2/ + mlX - amX2)x,

(25) g(x) = |1 - x/C^ (x + X)xgi(x)/Xh(x),

ffl(x) = (A2 + mA + l ) + (-26A2 + mX + aX - mbX + 2)x/X

+ (62A2 + aX- mbX - b)x2/X2.

If

(26) y = 3/2

then the system (1) is finally changed into

(27) dx/dt = y- F(x), dy/dt = -g(x),

where

.(28) F(x)=

/
o

[
Jo

By calculation, it is easy to see that

(29) gi(C) = (A2 +mX + l ) [( l + 6)A2 - l](aA + 6)/A2(-2aA2 + 2ZA - bX + m)
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Hence gi(x) has the linear factor h(x) if and only if aX + b = 0. Moreover, in this
situation it is easy to see by direct calculation that

(30) gi{x) = (1 + ax)h{x),

and hence

(25)' g(x) = |1 - x/C|27 (x + A)(l + ax)x/A.

We consider separately two possibilities.

(i) Ib2+a? -abm < 0. Then aX + b < 0 and gi(£*) > 0, by (16) and (29) respectively.
The zeros of gi(x) are the ^-coordinates of the finite singular points of (19) other than
N and 0. Since the coefficients of <7i(x) are all positive, and by hypothesis there is at
least one zero greater than £*, it follows that the quadratic gi(x) has two real zeros
Xi, X2 satisfying

(31) £* < *2 < asi < 0.

Since a limit cycle of (19) which surrounds O cannot surround any other singular

point, it is sufRcient to show that (27) satisfies the hypothesis of Lemma 4, with X02 =

xi, xoi = +oo.

Conditions (i) and (ii) are obviously satisfied. If / (x ) = 0 then either x = —A < £*

or

(32) x = x0 := m(A2 +mX+ l)/(b + 2l + mlX - amX2).

Moreover xo < 0, since I < 0. Since obviously no limit cycle surrounds O if xo ̂  x\,

we may assume x\ < xo • Then condition (iii) is satisfied.

To verify condition (iv) we evaluate the derivative of

w{x) := log[/(x)/S(x)] = log[/1(x)/x<7l(x) |1 - x/CF].

Evidently

(33) w\x) = /I(x)//!(x) - 1/x - g'1(x)/g1(x) - ih\x)/h{x)

= -m(A2 + mX + l)/x/j(x) - M(x)/gi(x)h(x)

= -W(x)/xf1(x)g1(x)h{x),

where

(34) W(x) = m(A2 +mX + l)gi(x)h(x) + xf1(x)M{x),

(35) M(x) = </i(x)/l(x)
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Since for x 6 (x i , xo)U(O, +oo) we have x / i (x ) > 0 and gi(x)h(x) > 0, we need only
show that also M(x) > 0.

We have either x2 = X\ and M(x i ) = 0, or x2 < X\ and

(36) M(x 2 ) < 0 < M(xj ) .

Consequently it is sufficient to show that the leading coefficient of the quadratic Af(x) is
positive. Since the leading coefficients of gi(x) and h(x) are positive, this is equivalent
to showing that 7 + 2 > 0. But

(37)
(7 + 2)A(2aA2 - 2/A + bX - m) = (m + 2/A - aA2)A + 2A(2aA2 - 2/A + bX-m)

= 3aA3 + 2(6 - Z)A2 - mX = X(p'(X),

by (9). Thus 7 + 2 has the same sign as Xtp'(X), by (13). Hence 7 + 2 > 0, and
condition (iv) of Lemma 4 is also satisfied. This proves the theorem in case (i).
(ii) /62 + a 2 - a6m = 0. Then aA + 6 = 0, by (16), and g{x) is given by (25) ' . Since by
hypothesis g{x) vanishes for some non-zero x > £*, it follows that —I/a > £*. Since

C + I / a = [a{b + 2) - m&(6 + l ) ] /a6(-2aA 2 + 2/A - 6A + m ) ,

this is equivalent to a(6 + 2) — m6(6+ 1) < 0. It may now be verified, as in case (i),
that all the conditions of Lemma 4 are satisfied with xo2 = x\ = —I/a, X<JI = +00.
This proves Theorem 1. D

PROOF OF THEOREM 2: By (8), at the infinite singular point z = 0, v = A, the
coefficient matrix of the system of linear approximation is

/ -(aX2+bX) 0

where <p(X) is again given by (9). As in the proof of the preceding theorem, we consider

separately two cases.

(i) lb2 + a2 - abm < 0. Then aX + b < 0 and ip'(X) > 0, by (16) and Lemma 3
respectively. Thus the unique infinite singular point z = 0 , v = A i s a saddle, situated
at the infinite ends of the line without contact h[x — Ay) = 0. By (21), a trajectory
of (1) must leave D when it intersects the line h(x — Ay) = 0. In addition, the unique
singular point O in D is a stable focus, since m > 0. Thus D, with the point O
omitted, and the equator form a generalised Bendixson annular region. Therefore there
is an odd number of limit cycles surrounding O in D (see Figure 1). This proves the
theorem in case (i).
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Figure 1

h(x — Xy) = 0

Figure 2

(ii) lb2 + a2 — abm = 0. Then aX + b = 0, one of the eigenvalues at the unique infinite
singular point z — 0, v = A is zero and the other is negative. We use the same method
as in Theorem 65 of [1] to discuss the singular point z — 0, v = A of (8). Let

and
y — - (A 2 +mA + l)£ + pi], t — pr,

p:=-<p'(X) = (b

where

(38)

Then (8) is changed into

dx/dt = P(x, y) = b[p + a(X2 + mX + l)]x2/ap2 + bxy/p2 +
(8)'

dy/dt = Q(x, y) = y

where • • • denotes terms of higher degree. Solving Q(x, y) — 0, we get y = ^(x) =
O(x2) . Substituting this in the first equation of (8) ' , we obtain

P ( x , 9 ( x ) ) = b[p + a(X2 + m X + l ) ] x 2 / a p 2 + ••• .

By direct calculation,

b[p + a(X2 +mX + l)] = a(b + 2) - mb(b + 1).

If a(b + 2) - mb(b + 1) > 0 then, by Theorem 65 of [1], the singular point O'{0, 0) of
(8) ' is a saddle-node and the phase-portrait in its neighbourhood is given by Figure 3.
But the signs of t and r are different, since p < 0 by (38).

Hence the phase-portrait in the neighbourhood of the singular point z = 0, v = X

of (8) is given by Figure 4. By a similar argument to that in case (i), it can now be
proved that there is an odd number of limit cycles surrounding O (see Figure 2).
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Figure 3 Figure 4

If a(b + 2) — mb(b + 1) = 0, then from (ii) in the proof of Theorem 1 the system has
no finite singular points besides N and O. The sum of the indices of these two finite
singular points is 2, so the index of the unique infinite singular point (z = 0, v = A) is
—1. A singular point, one of whose eigenvalues is zero and whose index is — 1, can only
be a saddle. It follows, as in (i), that there is an odd number of limit cycles surrounding
O.

If a[b + 2) — rnb(b -f 1) < 0, then from (ii) in the proof of Theorem 1, there is a
finite singular point besides O in D, which is contrary to hypothesis. Since all cases
have been discussed, this completes the proof of Theorem 2. U

PROOF OF THEOREM 3: Take A = A3 < 0, where A3 is defined as in Lemma 3.
(For simplicity, A3 is rewritten as A in the proofs of Theorems 3 and 4.) As in the proof
of Theorem 1, we obtain the system (27) by the transformations (18), (22) and (26),
where g{x), fli(z) and f(x), /i(x) are the same as in (25), with the same meaning of
£*. However, by (13) we now have £* > 0. Since the points N and O are on different
sides of the line h(x — Ay) — 0, we also have £* < —A.

We again denote the real zeros of gi(x) by xi, X2, where xi ^ X\, and we define
xo by (32). Since there are no limit cycles around O if XQ ^ £*, we may assume
x0 < C. But

£* - x0 = (A2 -2aA2 + 2/A - 2l + mlX - am\2),

where p = (6 + 2/)A + m > 0 since / < 0. Hence, b + 21 + mlX - am\2 < 0, by (13),
and x0 < 0, by (32). Thus

(39) x0 < 0 < C < -A.

Since aX + b < 0 and lb2 + a2 - abm ^ 0, by (16) we have

(40) 6 2 A 2 + a A - m 6 A - 6 ^ 0 .

We consider separately two cases.
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(i) b2\2 + oA — mb\ — 6 > 0. By (25), gi(x) is a quadratic polynomial with positive
leading coefficient. Moreover gi(x) is not divisible by h(x), since ffi(£*) > 0 by (29).
Thus the zeros of gi(x) are just the ^-coordinates of the finite singular points of (19)
other than N and O. By hypothesis such zeros exist. We denote them by X\, X2,
where xi ^ x\. Let us discuss the relationships between «i, x\, XQ , 0 and £*.

If X2 or X\ lies in the interval (XQ, 0) then, as in the discussion above, it can be
seen that there is no limit cycle surrounding O. Thus this case can be excluded. Since
<7i(0) > 0, 0i(£*) > 0, it follows that X2 and x\ must both lie in one of the following
three intervals:

(41) (-co, «„), (0, O> C, +oo).

We now show that X2 and x\ cannot both belong to (0, £*).

Consider the position of the singular points of (1). Since I < 0, we have m2 — 4/ > 0,
Thus the vertical isocline

(42) -y-mx + lx2 + mxy + t/2 = (y + mx)(y - 1) + lx2 = 0

is a hyperbola, which has no locus in the region

(y + mx){y - 1) < 0.

The horizontal isocline

(43) y = _(i + ax)/b

is a line with positive slope, crossing the y-axis between N and O. Since by hypothesis
the discriminant A > 0, (42) and (43) must intersect. Let R and M denote their
points of intersection (with R = M if A = 0). Together with N and O, they do not
form a convex quadrilateral. Hence R and M are either both on the arc I, which is on
the right side of N, or both on the arc II, which is on the left side of O (see Figure 5).

, L

Figure 5
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If R and M are on I, then after making the transformation

( = x - Ay, V=y,

it is easy to see that £R, £M > —A, which means —A < x2 ̂  X\.

Suppose R and M are on II. On the line

L:m{y-l)+(b + 2l)x = 0

the divergence of (1) is zero. It is a line with positive slope which passes through N.
The line L intersects the z-axis when x — m/(b + 2/), hence to the right of the point
(x = m/Z) where the arc II intersects the z-axis. Consequently the line L intersects
the arc II at some point P. Since a limit cycle surrounding O cannot intersect the
line 1 + ax -\- by = 0, and since it must intersect the line L, there is no limit cycle
surrounding 0 if R or M is to the right of P (or coincides with P) on the arc II.
Thus we may assume that R and M are both to the left of P on the arc II. Then the
sign of the divergence of (1) at R and M is opposite to its sign at 0. After the series
of transformations (18), (22) and (26), the sign of the divergence of (27) at R and M
is still opposite to its sign at 0. But in the strip XQ < x < £* the divergence of (27) is
of constant sign. Hence x2 and xi are not both in the interval (0, £*). Thus we need
only consider the following two situations:

(44) -co <i2<i1<io<0<f,

or

(45) - c o < x0 < 0 < C < *2 ^ xx.

Put xoi = £* and let XQ2 = x\ o r - c o according as (44) or (45) holds. We need
only show that the conditions of Lemma 4 are satisfied by the system (27). Conditions
(i)-(iii) are abviously satisfied. To verify condition (iv) we use (33)-(35), as in the
proof of Theorem 1. Since s / i ( z ) > 0 and gi(x)h(x) > 0, it is sufficient to show that
M(z) > 0 for X02 < x < zoi • Since the leading coefficient of </i(x) is positive and
the leading coefficient of h(x) is now negative, the coefficient of x2 in M(x) has the
opposite sign to 7 + 2. Hence, by (37), (13) and Lemma 3, the coefficient of x2 in
M(x) is positive if Ao > 0 and zero if Ao = 0. If x2 < x i , then M(x2) < 0 < M(zi)
if (44) holds and M(x2) > 0 > M{Xl) if (45) holds. If x2 = xx, then M(x2) = 0 and
M'(x2) = 9i(x2)h(x2) is positive or negative according as (44) or (45) holds. In every
case it follows immediately that M(x) > 0 for x02 < x < scoi • This completes the
proof in case (i).

(ii) 62A2 + a\ — mbX — 6 = 0. Then </i(x) is linear and has a unique zero x\. Just
as in (i), we see that either x\ < x0 or £* < x\. Put xOi = £* and let x02 = x\ or
- c o according as x t < x0 or xi > £*. Then it is easy to check that the conditions of
Lemma 4 are all satisfied. This completes the proof of Theorem 3. D
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NOTE. From the proof of Theorem 1 we see that Ao ^ 0 is also permitted, although
this case is included in Theorem 3. For clarity, we expressed these theorems as above.

PROOF OF THEOREM 4: To consider the uniqueness of the limit cycle surrounding
O we again use the system (27). As in the beginning of the proof of Theorem 3 we have
0 < £* < — A and we may assume xg < 0. Thus

(46) -oo < x0 < 0 < C < -A < +oo.

To use the fact that there is now a limit cycle surrounding N we make the change of
variables

(47) x -* x + A, r\t -* 772

in (24). Then (24) becomes

dxldt — 772,
(24)' ' _

dr}2/dt = -g(x) - f(x)T)2,

where g(x) = g(x - A), J(x) = f(x - A). Then £(0) = 0, /(0) = 0 and

g'(0) = |1 + A/nJ7(-A)yi(-A)/Afc(-A).

Since h(—A) < 0 and pi(—A) > 0, we have </'(0) > 0. Hence conditions (i), (ii)
and (iii)1 of Lemma 5 are satisfied by the system (15) formed from (24)'. Since the
conclusion of Lemma 5 does not hold, it follows that condition (iv)' is not satisfied.
Thus [f{x)/g(x)]f is not of constant sign in the interval £* < x < +oo. Since /i(x) > 0,
gi(x) > 0 and h(x) < 0, this is equivalent, by (33)-(35), to saying that W{x) is not of
constant sign for £* < x < +oo.

By Lemma 4, in order to prove the theorem it is sufficient to show that W(x) > 0

for x e (-oo, x0) U (0, C)- We have

(48)

(49)

(50) M'\x) = M"(D = (7 + 2 K ( n > i ' ( n > 0.
I f 9i(C) ^ 0, then M'(C) ^ 0; hence M(x) > 0 for x 6 (-oo, £*) and W(x) > 0
for x G (—oo, z0) U (0, £*). Consequently we may assume that g'i((*) > 0i
M'(C)>0. We have also

M(0) = g'i(0)h(0) + 75i(0)A'(0) = (A2 +m\ + l)(aA2 + a - mb) > 0

and M'(0) - ffi'(O)MO) + (7 + l)g[(0)h'(0)

= (7 + l)9'i(C)h'(0) - 7ffi'(0)fc(0) > 0,

since 7 + 1 = (0A2 + bX) /(2aA2 - 2ZA + bX - m) < 0.
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Since M'(x) is linear, it is positive throughout the interval [0, £*], and hence Af (x) > 0

for x G [0, (*]• It follows at once that W(x) > 0 for x G (0, £*).

It remains to prove that FF(x) > 0 for x G ( - co , xo). We have

W{x0) = m(A2 +m\ + l)gi{xo)h(xo) > 0,

W'(x0) = m(A2 + mA + l)(l - -y)gi(xo)h'(x0) < 0,

W'(C) = m(X2 +m\ + 1)(1 + -r)9l(nh'(n > 0.

Thus W'(x) vanishes for some x € (xo, £*). Since W(xi) < 0 for some X\ G (£*, +oo),
it is clear that W'(x) also vanishes for some x G (£*, Xj). Since the coefficient of x4

in W{x) is positive if Ao > 0 and zero if Ao = 0, W'(x) also vanishes for some
x £ (xj , +oo) if Ao > 0. Since all zeros of W'(x) are accounted for, it follows that
W'{x) < 0 for x £ ( -oo, xo). Hence W(x) > 0 for x G ( -co , x 0 ) . This completes the
proof of Theorem 4. D

Suppose a quadratic system has a weak focus and a strong focus, besides these, it
has two real or complex finite singular points p and q (or p = q, or one of them lies at
the equator). The line L connecting p and q must intersect the segment joining the
two foci, say at P. (The definitions for L in the other cases are similar, and are left to
the reader). We say that the quadratic system is positively normalised if the trajectory
at P crosses from the side of L containing the strong focus to the side of L containing
the weak focus.

THEOREM B . Suppose the finite singular points of a quadratic system include
a strong focus, a weak focus, and at most one saddle. Suppose also that the system
is positively normalised. Then if the strong focus is unstable, it has no Hmit cycle
surrounding it.

PROOF: By hypothesis and [6], the system can be written in the form (1) with (2),
(3), m < 0 and lb2 + a2 - abm ^ 0. And the line L is l + a x + fo/ = 0. Then we must
have either I ^ 0 or a - bm ^ 0. The proof is complete by Lemma 1. D
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