Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-22T17:41:34.025Z Has data issue: false hasContentIssue false

Agronomic characteristics, silage quality, intake and digestibility of five new Brazilian sorghum cultivars

Published online by Cambridge University Press:  14 July 2014

A. L. A. NEVES*
Affiliation:
Embrapa Dairy Cattle, Brazilian Agricultural Research Corporation (Embrapa), Juiz de Fora, Minas Gerais, Brazil
R. D. SANTOS
Affiliation:
Embrapa Semi-arid, Brazilian Agricultural Research Corporation (Embrapa), Petrolina, Pernambuco, Brazil
L. G. R. PEREIRA
Affiliation:
Embrapa Dairy Cattle, Brazilian Agricultural Research Corporation (Embrapa), Juiz de Fora, Minas Gerais, Brazil
G. F. OLIVEIRA
Affiliation:
Federal University of Sergipe, Aracaju, Sergipe, Brazil
C. B. SCHERER
Affiliation:
Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
R. S. VERNEQUE
Affiliation:
Embrapa Dairy Cattle, Brazilian Agricultural Research Corporation (Embrapa), Juiz de Fora, Minas Gerais, Brazil
T. McALLISTER
Affiliation:
Lethbridge Research Center, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
*
*To whom all correspondence should be addressed. Email: andre.neves@embrapa.br

Summary

Forage sorghum (FS) (Sorghum bicolor (L.) Moench) is a key feed source for ruminants owing to its high yield and drought tolerance. The present paper assessed the agronomic characteristics, silage quality, intake and digestibility of five new Brazilian sorghum cultivars (BRS Ponta Negra variety, BRS 655 hybrid, BR 601 hybrid, BRS 506 variety and BRS 610 hybrid). Forages were grown (randomized complete block design) in a typical Brazilian north-eastern semi-arid climate, irrigated with 267 mm water, harvested as plants reached the soft dough stage of grain maturity and ensiled under laboratory and farm conditions. Apparent digestibility of the silages was determined using 25 Santa Inês lambs. BRS 506 outperformed the other cultivars in dry matter (DM) and digestible DM yields/ha. BRS 506 exhibited the lowest neutral detergent fibre (NDF) and acid detergent fibre (ADF) contents and the highest in vitro dry matter digestibility (IVDMD) of the cultivars examined. BRS 655 produced the lowest level of lactic acid and the highest pH and ammonia-N concentration. There was no difference in intake or digestibility of DM among cultivars. Silages produced from BRS Ponta Negra resulted in higher crude protein (CP) intake than BRS 655. Silages made from BRS 506 and BRS Ponta Negra resulted in a greater digestibility of CP than those produced from BRS 655. Intake of NDF in silages generated from BRS Ponta Negra and BRS 610 was higher than that found in other cultivars. Although an average Brazilian North-eastern FS exhibited similar characteristics to other cultivars grown in dry regions around the world, the results indicated that BRS 506 had a yield advantage and higher nutritive value under Brazilian semi-arid conditions as compared to the other cultivars examined.

Type
Animal Research Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, R. F., Jones, R. L. & Conway, P. L. (1984). High-performance liquid-chromatography of microbial-acid metabolites. Journal of Chromatography B: Biomedical Sciences and Applications 336, 125137.CrossRefGoogle ScholarPubMed
Amer, S., Hassanat, F., Berthiaume, R., Seguin, P. & Mustafa, A. F. (2012). Effects of water soluble carbohydrate content on ensiling characteristics, chemical composition and in vitro gas production of forage millet and forage sorghum silages. Animal Feed Science and Technology 177, 2329.Google Scholar
AOAC (Association of Official Analytical Chemists) (1995). Official Methods of Analysis, 16th edn, method 920–39. Arlington, VA: AOAC.Google Scholar
Bates, B. C., Kundzewicz, Z. W., Wu, S. & Palutikof, J. P. (2008). Climate Change and Water. Technical Paper of the Intergovernmental Panel on Climate Change (IPCC). Geneva, Switzerland: IPCC Secretariat.Google Scholar
Bean, B. W., Baumhardt, R. L., McCollum, F. T. & McCuistion, K. C. (2013). Comparison of sorghum classes for grain and forage yield and forage nutritive value. Field Crops Research 142, 2026.CrossRefGoogle Scholar
Brazil (2008). Procedures for The Scientific Use of Animals. Based on the CLAUSE VII of the 1st Paragraph in Article 225 of the Brazilian Federal Constitution. Brasília, DF, Brazil: Brazilian Government through the National Council for the Control of Animal Experimentation (CONCEA) and Institutional Animal Care and Use Committees (CEUA).Google Scholar
Broderick, G. A. (1995). Desirable characteristics of forage legumes for improving protein-utilization in ruminants. Journal of Animal Science 73, 27602773.Google Scholar
Carmi, A., Umiel, N., Hagiladi, A., Yosef, E., Ben-Ghedalia, D. & Miron, J. (2005). Field performance and nutritive value of a new forage sorghum variety ‘Pnina’ recently developed in Israel. Journal of the Science of Food and Agriculture 85, 25672573.CrossRefGoogle Scholar
Carmi, A., Aharoni, Y., Edelstein, M., Umiel, N., Hagiladi, A., Yosef, E., Nikbachat, M., Zenou, A. & Miron, J. (2006). Effects of irrigation and plant density on yield, composition and in vitro digestibility of a new forage sorghum variety, Tal, at two maturity stages. Animal Feed Science and Technology 131, 120131.Google Scholar
Chaugool, J., Kondo, M., Kasuga, S., Naito, H., Goto, M. & Ehara, H. (2013). Nutritional evaluation and in vitro ruminal fermentation of Sorghum cultivars. Journal of Food, Agriculture and Environment 11, 345351.Google Scholar
Contreras-Govea, F., Marsalis, M., Angadi, S., Smith, G., Lauriault, L. M. & VanLeeuwen, D. (2011). Fermentability and nutritive value of corn and forage sorghum silage when in mixture with lablab bean. Crop Science 51, 13071313.CrossRefGoogle Scholar
Dahlberg, J. A. (2000). Classification and characterization of sorghum. In Sorghum: Origin, History, Technology and Production (Eds Smith, C. W. & Frederiksen, R. A.), pp. 99130. New York, USA: John Wiley & Sons.Google Scholar
Detmann, E., Souza, M. A., Valadares Filho, S. C., Queiroz, A. C., Berchielli, T. T., Saliba, E. O. S., Cabral, L. S., Pina, D. S., Ladeira, M. M. & Azevedo, J. A. G. (2012). Métodos para Análises de Alimentos – INCT – Ciência Animal. Visconde do Rio Branco, MG, Brazil: Editora UFV.Google Scholar
Grant, R. J., Haddad, S. G., Moore, K. J. & Pedersen, J. F. (1995). Brown midrib sorghum silage for midlactation dairy cows. Journal of Dairy Science 78, 19701980.Google Scholar
Jung, H. G. & Allen, M. S. (1995). Characteristics of plant-cell walls affecting intake and digestibility of forages by ruminants. Journal of Animal Science 73, 27742790.Google Scholar
Kudo, H., Cheng, K. J. & Costerton, J. W. (1987). Interactions between Treponema bryantii and cellulolytic bacteria in the in vitro degradation of straw cellulose. Canadian Journal of Microbiology 33, 244248.CrossRefGoogle ScholarPubMed
Kung, L. & Ranjit, N. K. (2001). The effect of Lactobacillus buchneri and other additives on the fermentation and aerobic stability of barley silage. Journal of Dairy Science 84, 11491155.Google Scholar
Ledgerwood, D. N., DePeters, E. J., Robinson, P. H., Taylor, S. J. & Heguy, J. M. (2009). Assessment of a brown midrib (BMR) mutant gene on the nutritive value of sudangrass using in vitro and in vivo techniques. Animal Feed Science and Technology 150, 207222.Google Scholar
Le Houérou, H. N. (1996). Climate change, drought and desertification. Journal of Arid Environments 34, 133185.Google Scholar
Le Houérou, H. N. (2000). Utilization of fodder trees and shrubs in the arid and semiarid zones of West Asia and North Africa. Arid Soil Research and Rehabilitation 14, 101135.Google Scholar
Lobell, D. B., Burke, M. B., Tebaldi, C., Mastrandrea, M. D., Falcon, W. P. & Naylor, R. L. (2008). Prioritizing climate change adaptation needs for food security in 2030. Science 319, 607610.CrossRefGoogle ScholarPubMed
Marsalis, M. A., Angadi, S. V. & Contreras-Govea, F. E. (2010). Dry matter yield and nutritive value of corn, forage sorghum, and BMR forage sorghum at different plant populations and nitrogen rates. Field Crops Research 116, 5257.Google Scholar
McDonald, P. (1981). The Biochemistry of Silage. Chichester, UK: John Wiley & Sons Ltd.Google Scholar
McDougall, E. I. (1948). Studies on ruminant saliva. 1. The composition and output of sheep`s saliva. Biochemistry Journal 43, 99109.CrossRefGoogle ScholarPubMed
McMaster, G. S. & Wilhelm, W. W. (1997). Growing degree-days: one equation, two interpretations. Agricultural and Forest Meteorology 87, 291300.Google Scholar
Miron, J. & Ben-Ghedalia, D. (1987). Digestibility by sheep of total and cell wall monosaccharides of wheat straw treated chemically or chemically plus enzymatically. Journal of Dairy Science 70, 18761884.Google Scholar
Miron, J., Zuckerman, E., Sadeh, D., Adin, G., Nikbachat, M., Yosef, E., Ben-Ghedalia, D., Carmi, A., Kipnis, T. & Solomon, R. (2005). Yield, composition and in vitro digestibility of new forage sorghum varieties and their ensilage characteristics. Animal Feed Science and Technology 120, 1732.CrossRefGoogle Scholar
Miron, J., Solomon, R., Adin, G., Nir, U., Nikbachat, M., Yosef, E., Carmi, A., Weinberg, Z. G., Kipnis, T., Zuckerman, E. & Ben-Ghedalia, D. (2006). Effects of harvest stage and re-growth on yield, composition, ensilage and in vitro digestibility of new forage sorghum varieties. Journal of the Science of Food and Agriculture 86, 140147.CrossRefGoogle Scholar
Miron, J., Zuckerman, E., Adin, G., Nikbachat, M., Yosef, E., Zenou, A., Weinberg, Z. G., Solomon, R. & Ben-Ghedalia, D. (2007 a). Field yield, ensiling properties and digestibility by sheep of silages from two forage sorghum varieties. Animal Feed Science and Technology 136, 203215.Google Scholar
Miron, J., Zuckerman, E., Adin, G., Solomon, R., Shoshani, E., Nikbachat, M., Yosef, E., Zenou, A., Weinberg, Z. G., Chen, Y., Halachmi, I. & Ben-Ghedalia, D. (2007 b). Comparison of two forage sorghum varieties with corn and the effect of feeding their silages on eating behavior and lactation performance of dairy cows. Animal Feed Science and Technology 139, 2339.Google Scholar
Newman, Y. C., Adesogan, A. T. & Wasdin, J. (2009). Silage Crops of Dairy and Beef Cattle. SS-AGR-69. Gainsfield, FL, USA: University of Florida Cooperative Extension Service.Google Scholar
Nichols, S. W., Froetschel, M. A., Amos, H. E. & Ely, L. O. (1998). Effects of fiber from tropical corn and forage sorghum silages on intake, digestion, and performance of lactating dairy cows. Journal of Dairy Science 81, 23832393.CrossRefGoogle ScholarPubMed
Oliver, A. L., Pedersen, J. F., Grant, R. J. & Klopfenstein, T. J. (2005). Comparative effects of the sorghum bmr-6 and bmr-12 genes. I. Forage sorghum yield and quality. Crop Science 45, 22342239.CrossRefGoogle Scholar
Pedersen, J. F., Gorz, H. J., Haskins, F. A. & Ross, W. M. (1982). Variability for quality and agronomic traits in forage sorghum hybrids. Crop Science 22, 853856.Google Scholar
Sanchez, A. C., Subudhi, P. K., Rosenow, D. T. & Nguyen, H. T. (2002). Mapping QTLs associated with drought resistance in sorghum (Sorghum bicolor L. Moench). Plant Molecular Biology 48, 713726.Google Scholar
dos Santos, R. D., Pereira, L. G. R., Neves, A. L. A., Rodrigues, J. A. S., Costa, C. T. F. & de Oliveira, G. F. (2013 a). Agronomic characteristics of forage sorghum cultivars for silage production in the lower middle San Francisco Valley. Acta Scientiarum (Animal Sciences) 35, 1319.Google Scholar
Dos Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. A., Lumbreras, J. F., Coelho, M. R., Almeida, J. A., Cunha, T. J. F. & Oliveira, J. B. (2013 b). Sistema Brasileiro de Classificação de Solos. Brasília, DF, Brazil: Editora: Embrapa.Google Scholar
SAS (2002). SAS User's Guide, 9·1 edn. Cary, NC: SAS Institute Inc.Google Scholar
Sebastian, S., Phillip, L. E., Fellner, V. & Idziak, E. S. (1996). Comparative assessment of bacterial inoculation and propionic acid treatment on aerobic stability and microbial populations of ensiled high-moisture ear corn. Journal of Animal Science 74, 447456.CrossRefGoogle ScholarPubMed
da Silva, J. F. C. & Leão, M. I. (1979). Fundamentos de Nutrição dos Ruminantes. Piracicaba, SP, Brazil: Livroceres.Google Scholar
Sniffen, C. J., O'Connor, J. D., Van Soest, P. J., Fox, D. G. & Russell, J. B. (1992). A net carbohydrate and protein system for evaluating cattle diets. 2. Carbohydrate and protein availability. Journal of Animal Science 70, 35623577.Google Scholar
Tilley, J. M. A. & Terry, R. A. (1963). A two-stage technique for the in vitro digestion of forage crops. Grass and Forage Science 18, 104111.Google Scholar
Van Soest, P. J. (1994). Nutritional Ecology of the Ruminant. Ithaca, NY: Cornell University Press.Google Scholar
Van Soest, P. J., Robertson, J. B. & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 35833597.Google Scholar
Vogel, K. P. & Jung, H. J. G. (2001). Genetic modification of herbaceous plants for feed and fuel. Critical Reviews in Plant Sciences 20, 1549.Google Scholar
Ward, J. D., Redfearn, D. D., McCormick, M. E. & Cuomo, G. J. (2001). Chemical composition, ensiling characteristics, and apparent digestibility of summer annual forages in a subtropical double-cropping system with annual ryegrass. Journal of Dairy Science 84, 177182.CrossRefGoogle Scholar
Weatherburn, M. W. (1967). Phenol-hypochlorite reaction for determination of ammonia. Analytical Chemistry 39, 971974.Google Scholar
Weiss, W. P. & Wyatt, D. J. (2000). Effect of oil content and kernel processing of corn Silage on digestibility and milk production by dairy cows. Journal of Dairy Science 83, 351358.Google Scholar