Skip to main content
Log in

From Diatom Biomolecules to Bioinspired Syntheses of Silica- and Titania-Based Materials

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Amorphous silica is (next to CaCO3) the second most abundant biologically produced inorganic material. A certain group of photosynthetic microalgae, called diatoms, forms complex 3D silica architectures (frustules) containing regularly arranged nanoscale features (pores, channels, protuberances). Recently, biomolecules involved in diatom silica formation have been characterized, and first insights into their structure-function correlations have been obtained. This has spurred the development of synthetic (bio)polymers capable of directing the in vitro formation of silica and other inorganic materials from aqueous precursor solutions under mild conditions. Here we present a summary of current insight into the mechanism of silica formation by diatom biomolecules and provide examples of synthetic (bio)polymers for the formation of silica and titania materials with complex structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.A. Lowenstam, S. Weiner, On Biomineralization (Oxford University Press, Oxford, 1989).

    Google Scholar 

  2. S. Mann, Biomineralization (Oxford University Press, Oxford, 2002).

    Google Scholar 

  3. E. Bäuerlein, Ed., Handbook of Biomineralization (Wiley-VCH, Weinheim, 2007).

    Google Scholar 

  4. S. Mann, G.A. Ozin, Nature 382, 313 (1996).

    Google Scholar 

  5. I.C. Gebeshuber, Nano Today 2, 30 (2007).

    Google Scholar 

  6. R. Gordon, D. Losic, M.A. Tiffany, S.S. Nagy, F.A.S. Sterrenburg, Trends Biotechnol. 27, 116 (2008).

    Google Scholar 

  7. D. Losic, J.G. Mitchell, N.H. Voelcker, Adv. Mater. 21, 1 (2009).

    Google Scholar 

  8. F.E. Round, D.G. Mann, R.M. Crawford, The Diatoms: Biology and Morphology of the Genera (Cambridge University Press, Cambridge, 1990).

    Google Scholar 

  9. B.E. Volcani, in Silicon and Siliceous Structures in Biological Systems, B.E. Volcani, T.L. Simpson, Eds. (Springer-Verlag, Berlin, 1981), pp. 157–200.

    Google Scholar 

  10. D.M. Swift, A.P. Wheeler, J. Phycol. 28, 202 (1992).

    Google Scholar 

  11. N. Kröger, N. Poulsen, Annu. Rev. Genet. 42, 83 (2008).

    Google Scholar 

  12. M. Sumper, E. Brunner, Chembiochem 9, 1187 (2008).

    Google Scholar 

  13. N. Kröger, S. Lorenz, E. Brunner, M. Sumper, Science 298, 584 (2002).

    Google Scholar 

  14. N. Poulsen, M. Sumper, N. Kröger, Proc. Nat. Acad. Sci. U.S.A. 100, 12073 (2003).

    Google Scholar 

  15. N. Poulsen, N. Kröger, J. Biol. Chem. 279, 42993 (2004).

    Google Scholar 

  16. S. Wenzl, R. Hett, P. Richthammer, M. Sumper, Angew. Chem. Int. Ed. 47, 1729 (2008).

    Google Scholar 

  17. N. Kröger, R. Deutzmann, M. Sumper, Science 286, 1129 (1999).

    Google Scholar 

  18. N. Kröger, R. Deutzmann, M. Sumper, J. Biol. Chem. 276, 26066 (2001).

    Google Scholar 

  19. S. Wenzl, R. Deutzmann, R. Hett, E. Hochmuth, M. Sumper, Angew. Chem. Int. Ed. 43, 5933 (2004).

    Google Scholar 

  20. M. Sumper, R. Hett, G. Lehmann, S. Wenzl, Angew. Chem. Int. Ed. 46, 8405 (2007).

    Google Scholar 

  21. M. Sumper, S. Lorenz, E. Brunner, Angew. Chem. Int. Ed. 42, 5192 (2003).

    Google Scholar 

  22. E. Brunner, K. Lutz, M. Sumper, Phys. Chem. Chem. Phys. 6, 854 (2004).

    Google Scholar 

  23. S.V. Patwardhan, S.J. Clarson, C.C. Perry, Chem. Commun. 1113 (2005).

  24. P. Behrens, M. Jahns, H. Menzel, in Handbook of Biomineralization, P. Behrens, E. Baeuerlein, Eds. (Wiley-VCH, Weinheim, 2007), pp. 3–18.

    Google Scholar 

  25. C. Gröger, K. Lutz, E. Brunner, Cell Biochem. Biophys. 50, 23 (2008).

    Google Scholar 

  26. T. Mizutani, H. Nagase, N. Fujiwara, H. Ogoshi, Bull. Chem. Soc. Jpn. 71, 2017 (1998).

    Google Scholar 

  27. E.G. Vrieling, Q.Y. Sun, T.P.M. Beelen, S. Hazelaar, W.W.C. Gieskes, R.A. van Santen, N.A.J.M. Sommerdijk, J. Nanosci. Nanotechnol. 5, 68 (2005).

    Google Scholar 

  28. M.B. Dickerson, K.H. Sandhage, R.R. Naik, Chem. Rev. 108, 4935 (2008).

    Google Scholar 

  29. Y. Zhang, H. Wu, J. Li, L. Li, Y. Jiang, Y. Jiang, Z. Jiang, Chem. Mater. 20, 1041 (2008).

    Google Scholar 

  30. D.J. Kim, K.B. Lee, Y.S. Chi, W.J. Kim, H.J. Paik, I.S. Choi, Langmuir 20, 7904 (2004).

    Google Scholar 

  31. S.L. Sewell, R.D. Rudledge, D.W. Wright, Dalton Trans. 3857 (2008).

  32. M.B. Dickerson, S.E. Jones, Y. Cai, G. Ahmad, R.R. Naik, N. Kröger, K.H. Sandhage, Chem. Mater. 20, 1578 (2008).

    Google Scholar 

  33. N. Kröger, M.B. Dickerson, G. Ahmad, Y. Cai, M.S. Haluska, K.H. Sandhage, N. Poulsen, V.C. Sheppard, Angew. Chem. Int. Ed. 45, 7239 (2006).

    Google Scholar 

  34. D. Belton, S.V. Patwardhan, V.V. Annenkov, E.N. Danilovtseva, C.C. Perry, Proc. Nat. Acad. Sci. U.S.A. 105, 5963 (2008).

    Google Scholar 

  35. N. Kröger, M. Sumper, in Biomineralization, E. Bäuerlein, Ed. (Wiley-VCH, Weinheim, 2000), pp. 151–170.

    Google Scholar 

  36. W. Stöber, A. Fink, E. Bohn, J. Colloid Interface Sci. 26, 62 (1968).

    Google Scholar 

  37. F. Rodriguez, D.D. Glawe, R.R. Naik, K.P. Hallinan, M.O. Stone, Biomacromolecules 5, 261 (2004).

    Google Scholar 

  38. M.J. Pender, L.A. Sowards, J.D. Hartgerink, M.O. Stone, R.R. Naik, Nano Lett. 6, 40 (2006).

    Google Scholar 

  39. C.W.P. Foo, S.V. Patwardhan, D.J. Belton, B. Kitchel, D. Anastasiades, J. Huang, R.R. Naik, C.C. Perry, D.L. Kaplan, Proc. Nat. Acad. Sci. U.S.A. 103, 9428 (2006).

    Google Scholar 

  40. W. Marner II, A.S. Shaikh, S.J. Muller, J.D. Keasling, Biomacromolecules 9, 1 (2008).

    Google Scholar 

  41. M.M. Tomczak, D.D. Glawe, L.F. Drummy, C.G. Lawrence, M.O. Stone, C.C. Perry, D.J. Pochan, T.J. Deming, R.R. Naik, J. Am. Chem. Soc. 127, 12577 (2005).

    Google Scholar 

  42. M. Sumper, Angew. Chem. Int. Ed. 43, 2251 (2004).

    Google Scholar 

  43. G.M. Gratson, M. Xu, J.A. Lewis, Nature 428, 386 (2004).

    Google Scholar 

  44. M. Xu, G.M. Gratson, E.B. Duoss, R.F. Shepherd, J.A. Lewis, Soft Matter 2, 205 (2006).

    Google Scholar 

  45. K.E. Cole, A.N. Ortiz, M.A. Schoonen, A.M. Valentine, Chem. Mater. 18, 4592 (2006).

    Google Scholar 

  46. R.L. Brutchey, D.E. Morse, Chem. Rev. 108, 4915 (2008).

    Google Scholar 

  47. W.E. Müller, X. Wang, F.Z. Cui, K.P. Jochum, W. Tremel, J. Bill, H.C. Schröder, F. Natalio, U. Schlossmacher, M. Wiens, Appl. Microbiol. Biotechnol. 83, 397 (2009).

    Google Scholar 

  48. A. Arakaki, H. Nakazawa, M. Nemoto, T. Mori, T. Matsunaga, J. R. Soc. Interface 5, 977 (2008).

    Google Scholar 

  49. N. Poulsen, C. Berne, J. Spain, N. Kröger, Angew. Chem. Int. Ed. 46, 1843 (2007).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kröger, N., Sandhage, K.H. From Diatom Biomolecules to Bioinspired Syntheses of Silica- and Titania-Based Materials. MRS Bulletin 35, 122–126 (2010). https://doi.org/10.1557/mrs2010.631

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2010.631

Navigation