Skip to main content

Advertisement

Log in

Organic/Inorganic Hybrids for Solar Energy Generation

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Organic and hybrid (organic/inorganic) solar cells are an attractive alternative to traditional silicon-based photovoltaics due to low-temperature, solution-based processing and the potential for rapid, easily scalable manufacturing. Using oxide semiconductors, instead of fullerenes, as the electron acceptor and transporter in hybrid solar cells has the added advantages of better environmental stability, higher electron mobility, and the ability to engineer interfacial band offsets and hence the photovoltage. Further improvements to this structure can be made by using metal oxide nanostructures to increase heterojunction areas, similar to bulk heterojunction organic photovoltaics. However, compared to all-organic solar cells, these hybrid devices produce far lower photocurrent, making improvement of the photocurrent the highest priority. This points to a less than optimized polymer/metal oxide interface for carrier separation. In this article, we summarize recent work on examining the polymer structure, electron transfer, and recombination at the polythiophene-ZnO interface in hybrid solar cells. Additionally, the impact of chemical modification at the donor-acceptor interface on the device characteristics is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.J. Brabec, J. Durrant, MRS Bull. 33, 670 (2008).

    Google Scholar 

  2. C.J. Brabec, J.A. Hauch, P. Schilinsky, C. Waldauf, MRS Bull. 30, 50 (2005).

    Google Scholar 

  3. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nat. Mater. 4, 864 (2005).

    Google Scholar 

  4. Y. Kim, S. Cook, S. Tuladhar, S. Choulis, J. Nelson, J. Durrant, D. Bradley, M. Giles, I. Mcculloch, C. Ha, M. Ree, Nat. Mater. 5, 197 (2006).

    Google Scholar 

  5. J.Y. Kim, S.H. Kim, H. Lee, K. Lee, W. Ma, X. Gong, A. Heeger, Adv. Mater. 18, 572 (2006).

    Google Scholar 

  6. Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu, Adv. Mater. 2010. DOI: 10.1002/adma.200903528.

  7. X.W. Sun, J.Z. Huang, J.X. Wang, Z. Xu, Nano Lett. 8, 1219 (2008).

    Google Scholar 

  8. S. Blumstengel, S. Sadofev, F. Henneberger, New Journal of Physics 10, 065010 (2008).

    Google Scholar 

  9. J.B. Baxter, E.S. Aydil, Appl. Phys. Lett. 86, 053114 (2005).

    Google Scholar 

  10. A.I. Hochbaum, P. Yang, Chem Rev. 110, 527 (2010).

    Google Scholar 

  11. S. Hau, H. Yip, N. Baek, J. Zou, K. O’Malley, A. Jen, Appl. Phys. Lett. 92, 253301 (2008).

    Google Scholar 

  12. F.C. Krebs, Sol. Energy Mater. Sol. Cells 92, 715 (2008).

    Google Scholar 

  13. C. Li, T. Wen, T. Lee, T. Guo, J. Huang, Y. Lin, Y. Hsu, J. Mater. Chem. 19, 1643 (2009).

    Google Scholar 

  14. M.T. Lloyd, D.C. Olson, P. Lu, E. Fang, D.L. Moore, M.S. White, M.O. Reese, D.S. Ginley, J.W.P. Hsu, J. Mater. Chem. 19, 7638 (2009).

    Google Scholar 

  15. D. Olson, S. Shaheen, M. White, W. Mitchell, M. van Hest, R. Collins, D. Ginley, Adv. Funct. Mater. 17, 264 (2007).

    Google Scholar 

  16. M.T. Lloyd, Y.-J. Lee, R.J. Davis, E. Fang, R.M. Fleming, R.J. Kline, M.F. Toney, J.W.P. Hsu, J. Phys. Chem. C 113, 17608 (2009).

    Google Scholar 

  17. K.M. Coakley, M.D. McGehee, Appl. Phys. Lett. 83, 3380 (2003).

    Google Scholar 

  18. D. Olson, J. Piris, R. Collins, S. Shaheen, D. Ginley, Thin Solid Films 496, 26 (2006).

    Google Scholar 

  19. W.I. Park, D.H. Kim, S.W. Jung, G.-C. Yi, Appl. Phys. Lett. 80, 4232 (2002).

    Google Scholar 

  20. W.L. Hughes, Z.L. Wang, Appl. Phys. Lett. 86, 043106 (2005).

    Google Scholar 

  21. Y.W. Heo, V. Varadarajan, M. Kaufman, K. Kim, D.P. Norton, F. Ren, P.H. Fleming, Appl. Phys. Lett. 81, 3046 (2002).

    Google Scholar 

  22. L. Vayssieres, K. Keis, S.-E. Lindquist, A. Hagfeldt, J. Phys. Chem. B 105, 3350 (2001).

    Google Scholar 

  23. Z.R. Tian, J.A. Voigt, J. Liu, B. McKenzie, M.J. McDermott, M.A. Rodriguez, H. Konishi, H. Xu, Nat. Mater. 2, 821 (2003).

    Google Scholar 

  24. R.B. Peterson, C.L. Fields, B.A. Gregg, Langmuir 20, 5114 (2004).

    Google Scholar 

  25. L.E. Greene, M. Law, D.H. Tan, M. Montano, J. Goldberger, G. Somorjai, P. Yang, Nano Lett. 5, 1231 (2005).

    Google Scholar 

  26. W.J. Beek, M.M. Wienk, M. Kemerink, X.N. Yang, R.A. Janssen, J. Phys. Chem B 109, 9505 (2005).

    Google Scholar 

  27. A. Bashir, P.H. Wobkenberg, J. Smith, J.M. Ball, G. Adamopoulos, D.D.C. Bradley, T.D. Anthopoulos, Adv. Mater. 21, 2226 (2009).

    Google Scholar 

  28. W.J.E. Beek, L.H. Slooff, M.M. Wienk, J.M. Kroon, R.A. Janssen, Adv. Func. Mater. 15, 1703 (2005).

    Google Scholar 

  29. D.J.D. Moet, L.J.A. Koster, B. de Boer, P.W.M. Blom, Chem. Mat. 19, 5856 (2007).

    Google Scholar 

  30. W.J.E. Beek, M.M. Wienk, R.A.J. Janssen, Adv. Funct. Mater. 16, 1112 (2006).

    Google Scholar 

  31. E.L. Ratcliff, J.L. Jenkins, K. Nebesny, N.R. Armstrong, Chem. Mater. 20, 5796 (2008).

    Google Scholar 

  32. S. Tong, C. Zhang, C. Jiang, Q. Ling, E. Kang, D. Chan, C. Zhu, Appl. Phys. Lett. 93, 043304 (2008).

    Google Scholar 

  33. T. Monson, M. Lloyd, D. Olson, Y. Lee, J. Hsu, Adv. Mater. 20, 4755 (2008).

    Google Scholar 

  34. C. Goh, S.R. Scully, M.D. McGehee, J. Appl. Phys. 101, 114503 (2007).

    Google Scholar 

  35. S. Hau, H.-L. Yip, H. Ma, A. Jen, Appl. Phys. Lett. 93, 233304 (2008).

    Google Scholar 

  36. E.D. Spoerke, M.T. Lloyd, E.S. Martin, D.C. Olson, Y.-J. Lee, J.W.P. Hsu, Appl. Phys. Lett. 95, 213506 (2009).

    Google Scholar 

  37. L. Greene, M. Law, B.D. Yuhas, P. Yang, J. Phys. Chem. C 111, 18451 (2007).

    Google Scholar 

  38. Y. Lin, T. Chu, C. Chen, W. Su, Appl. Phys. Lett. 92, 053312 (2008).

    Google Scholar 

  39. P. Ravirajan, A.M. Peiro, M.K. Nazeeruddin, M. Graetzel, D.D.C. Bradley, J.R. Durrant, J. Nelson, J. Phys. Chem. B 110, 7635 (2006).

    Google Scholar 

  40. Y.-Y. Lin, Y.-Y. Lee, L. Chang, J.-J. Wu, C.-W. Chen, Appl. Phys. Lett. 94, 063308 (2009).

    Google Scholar 

  41. H. Sirringhaus, P.J. Brown, R.H. Friend, M.M. Nielsen, K. Bechgaard, B.M.W. Langeveld-Voss, A.J.H. Spiering, R.A.J. Janssen, E.W. Meijer, P. Herwig, D.M. de Leeuw, Nature 401, 685 (1999).

    Google Scholar 

  42. G. Wang, J. Swensen, D. Moses, A.J. Heeger, J. Appl. Phys. 93, 6137 (2003).

    Google Scholar 

  43. S. Cho, K. Lee, J. Yuen, G. Wang, D. Moses, A.J. Heeger, M. Surin, R. Lazzaroni, J. Appl. Phys. 100, 114503 (2006).

    Google Scholar 

  44. R.J. Kline, M.D. McGehee, E.N. Kadnikova, J. Liu, J.M.J. Frechet, Adv. Mater. 15, 1519 (2003).

    Google Scholar 

  45. Y. Kim, S. Cook, S.M. Tuladhar, S.A. Choulis, J. Nelson, J.R. Durrant, D.D.C. Bradley, M. Giles, I. McCulloch, C.-S. Ha, M. Ree, Nat. Mater. 5, 197 (2006).

    Google Scholar 

  46. J.-F. Chang, B. Sun, D.W. Breiby, M.M. Nielsen, T.I. Solling, M. Giles, I. McCulloch, H. Sirringhaus, Chem. Mater. 16, 4772 (2004).

    Google Scholar 

  47. W. Ma, C. Yang, X. Gong, K. Lee, A.J. Heeger, Adv. Func. Mater. 15, 1617 (2005).

    Google Scholar 

  48. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nat. Mater. 4, 864 (2005).

    Google Scholar 

  49. D. DeLongchamp, B.M. Vogel, Y. Jung, M.C. Gurau, C.A. Richter, Ol A. Kirillov, J. Obrzut, D.A. Fischer, S. Sambasivan, L.J. Richter, E.K. Lin, Chem. Mater. 17, 5610 (2005).

    Google Scholar 

  50. R.J. Kline, D.M. DeLongchamp, D.A. Fischer, E.K. Lin, M. Heeney, I. McCulloch, M.F. Toney, Appl. Phys. Lett. 90, 062117 (2007).

    Google Scholar 

  51. M.T. Lloyd, R.P. Prasankumar, M.B. Sinclair, A.C. Mayer, D.C. Olson, J.W.P. Hsu, J. Mater. Chem. 19, 4609 (2009).

    Google Scholar 

  52. P.A.C. Quist, W. Beek, M. Wienk, R.A.J. Janssen, L.D.A. Siebbeles, J. Phys. Chem. B 110, 10315 (2006).

    Google Scholar 

  53. J. Veres, S. Ogier, G. Lloyd, D.M. de Leeuw, Chem. Mater. 16, 4543 (2004).

    Google Scholar 

  54. R.J. Kline, M.D. Mcgehee, M.F. Toney, Nat. Mater. 5, 222 (2006).

    Google Scholar 

  55. F. Spano, J. Chem. Phys. 122, 234701 (2005).

    Google Scholar 

  56. O. Inganas, W.R. Salaneck, J.-E. Osterhom, J. Laakso, Synth. Met. 22, 395 (1988).

    Google Scholar 

  57. P.J. Brown, D.S. Thomas, A. Kohler, J.S. Wilson, J.-S. Kim, C.M. Ramsdale, H. Sirringhaus, R.H. Friend, Phys. Rev. B 16, 064203 (2003).

    Google Scholar 

  58. J. Clark, C. Silva, R.H. Friend, F.C. Spano, Phys. Rev. Lett. 98, 206406 (2007).

    Google Scholar 

  59. H.H. Yang, S.W. LeFevre, C.Y. Ryu, Z.N. Bao, Appl. Phys. Lett. 90, 172116 (2007).

    Google Scholar 

  60. D.R. Lide, Ed., Handbook of Chemistry and Physics, 84th Edition (Boca Rotan, FL, 2003), Vol. Section 9, pp. 52–64.

    Google Scholar 

  61. J. Peet, J. Kim, N. Coates, W. Ma, D. Moses, A. Heeger, G. Bazan, Nat. Mater. 6, 497 (2007).

    Google Scholar 

  62. C.X. Sheng, M. Tong, S. Singh, Z.V. Vardeny, Phys. Rev. B 75, 085206 (2007).

    Google Scholar 

  63. R. Osterbacka, C.P. An, X.M. Jiang, Z.V. Vardeny, Science 287, 839 (2000).

    Google Scholar 

  64. X. Ai, N. Anderson, J.C. Guo, J. Kowalik, L.M. Tolbert, T.Q. Lian, J. Phys. Chem. B 110, 25496 (2006).

    Google Scholar 

  65. J. Piris, N. Kopidakis, D.C. Olson, S.E. Shaheen, D.S. Ginley, G. Rumbles, Adv. Funct. Mater. 17, 3849 (2007).

    Google Scholar 

  66. G.G. Malliaras, J.R. Salem, P.J. Brock, J.C. Scott, J. Appl. Phys. 84, 1583 (1998).

    Google Scholar 

  67. R.N. Marks, J.J.M. Halls, D.D.C. Bradley, R.H. Friend, A.B. Holmes, J. Phys. Condens. Mater. 6, 1379 (1994).

    Google Scholar 

  68. S.D. Oosterhout, M.M. Wienk, S.S. v. Bavel, R. Thiedmann, L.J.A. Koster, J. Gilot, J. Loos, V. Schmidt, R.A.J. Janssen, Nat. Mater. 8, 1 (2009).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, J.W.P., Lloyd, M.T. Organic/Inorganic Hybrids for Solar Energy Generation. MRS Bulletin 35, 422–428 (2010). https://doi.org/10.1557/mrs2010.579

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2010.579

Navigation