Skip to main content
Log in

Recent Developments in Carbon Nanotube Sorting and Selective Growth

  • Articles
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Due to their high carrier mobilities, electromigration resistance, and tailorable optical properties, carbon nanotubes are promising candidates for high-performance electronic and optoelectronic applications. However, traditional synthetic methods have lacked control over the structure and properties of carbon nanotubes. This polydispersity problem has confounded efforts to take carbon nanotubes from the research laboratory to the marketplace, especially for electronic and optoelectronic applications, where reliable and reproducible performance is paramount. In recent years, the research community has devoted significant effort to this issue, leading to substantial advances in the preparation of monodisperse carbon nanotube materials. This article highlights the most recent and promising developments from two perspectives: post-synthetic sorting and selective growth of carbon nanotubes of predetermined physical and electronic structure. These complementary approaches have yielded improved uniformity in carbon nanotube materials, resulting in impressive advances in carbon nanotube electronic and optoelectronic technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.J. Tans, A.R.M. Verschueren, C. Dekker, Nature 393, 49 (1998).

    Google Scholar 

  2. R. Martel, T. Schmidt, H.R. Shea, T. Hertel, P. Avouris, Appl. Phys. Lett. 73, 2447 (1998).

    Google Scholar 

  3. A. Javey, J. Guo, Q. Wang, M. Lundstrom, H.J. Dai, Nature 424, 654 (2003).

    Google Scholar 

  4. A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker, Science 294, 1317 (2001).

    Google Scholar 

  5. V. Derycke, R. Martel, J. Appenzeller, P. Avouris, Nano Lett. 1, 453 (2001).

    Google Scholar 

  6. B.K. Kaushik, S. Goel, G. Rauthan, Microelectron. Int. 24, 53 (2007).

    Google Scholar 

  7. S.J. Tans, M.H. Devoret, H.J. Dai, A. Thess, R.E. Smalley, L.J. Geerligs, C. Dekker, Nature 386, 474 (1997).

    Google Scholar 

  8. M.J. O’Connell, S.M. Bachilo, C.B. Huffman, V.C. Moore, M.S. Strano, E.H. Haroz, K.L. Rialon, et al., Science 297, 593 (2002).

    Google Scholar 

  9. J.A. Misewich, R. Martel, P. Avouris, J.C. Tsang, S. Heinze, J. Tersoff, Science 300, 783 (2003).

    Google Scholar 

  10. R.C. Haddon, J. Sippel, A.G. Rinzler, F. Papadimitrakopoulos, MRS Bull. 29, 252 (2004).

    Google Scholar 

  11. R. Krupke, F. Hennrich, Adv. Eng. Mater. 7, 111 (2005).

    Google Scholar 

  12. S. Banerjee, T. Hemraj-Benny, S.S. Wong, J. Nanosci. Nanotechnol. 5, 841 (2005).

    Google Scholar 

  13. M.C. Hersam, Nat. Nanotechnol. 3, 387 (2008).

    Google Scholar 

  14. A. Hirsch, Angew. Chem. Int. Ed. 41, 1853 (2002).

    Google Scholar 

  15. S. Banerjee, T. Hemraj-Benny, S.S. Wong, Adv. Mater. 17, 17 (2005).

    Google Scholar 

  16. D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato, Chem. Rev. 106, 1105 (2006).

    Google Scholar 

  17. N. Izard, S. Kazaoui, K. Hata, T. Okazaki, T. Saito, S. Iijima, N. Minami, Appl. Phys. Lett. 92, 243112 (2008).

    Google Scholar 

  18. F.M. Chen, B. Wang, Y. Chen, L.J. Li, Nano Lett. 7, 3013 (2007).

    Google Scholar 

  19. A. Nish, J.Y. Hwang, J. Doig, R.J. Nicholas, Nat. Nanotechnol. 2, 640 (2007).

    Google Scholar 

  20. J.Y. Hwang, A. Nish, J. Doig, S. Douven, C.W. Chen, L.C. Chen, R.J. Nicholas, J. Am. Chem. Soc. 130, 3543 (2008).

    Google Scholar 

  21. S.Y. Ju, J. Doll, I. Sharma, F. Papadimitrakopoulos, Nat. Nanotechnol. 3, 356 (2008).

    Google Scholar 

  22. R. Marquis, C. Greco, I. Sadokierska, S. Lebedkin, M.M. Kappes, T. Michel, L. Alvarez, J.L. Sauvajol, S. Meunier, C. Mioskowski, Nano Lett. 8, 1830 (2008).

    Google Scholar 

  23. R.M. Tromp, A. Afzali, M. Freitag, D.B. Mitzi, Z. Chen, Nano Lett. 8, 469 (2008).

    Google Scholar 

  24. X. Peng, N. Komatsu, S. Bhattacharya, T. Shimawaki, S. Aonuma, T. Kimura, A. Osuka, Nat. Nanotechnol. 2, 361 (2007).

    Google Scholar 

  25. X. Peng, N. Komatsu, T. Kimura, A. Osuka, J. Am. Chem. Soc. 129, 15947 (2007).

    Google Scholar 

  26. X.B. Peng, N. Komatsu, T. Kimura, A. Osuka, ACS Nano 2, 2045 (2008).

    Google Scholar 

  27. X.B. Peng, F. Wang, T. Kimura, N. Komatsu, A. Osuka, J. Phys. Chem. C 113, 9108 (2009).

    Google Scholar 

  28. M.C. LeMieux, M. Roberts, S. Barman, Y.W. Jin, J.M. Kim, Z.N. Bao, Science 321, 101 (2008).

    Google Scholar 

  29. M.S. Arnold, S.I. Stupp, M.C. Hersam, Nano Lett. 5, 713 (2005).

    Google Scholar 

  30. S.N. Kim, Z.F. Kuang, J.G. Grote, B.L. Farmer, R.R. Naik, Nano Lett. 8, 4415 (2008).

    Google Scholar 

  31. M. Zheng, A. Jagota, E.D. Semke, B.A. Diner, R.S. Mclean, S.R. Lustig, R.E. Richardson, N.G. Tassi, Nat. Mater. 2, 338 (2003).

    Google Scholar 

  32. M. Zheng, A. Jagota, M.S. Strano, A.P. Santos, P. Barone, S.G. Chou, B.A. Diner, et al., Science 302, 1545 (2003).

    Google Scholar 

  33. M. Zheng, E.D. Semke, J. Am. Chem. Soc. 129, 6084 (2007).

    Google Scholar 

  34. X. Tu, M. Zheng, Nano Res. 1, 185 (2008).

    Google Scholar 

  35. M.C. Hersam, Nature 460, 186 (2009).

    Google Scholar 

  36. X.M. Tu, S. Manohar, A. Jagota, M. Zheng, Nature 460, 250 (2009).

    Google Scholar 

  37. M.S. Arnold, A.A. Green, J.F. Hulvat, S.I. Stupp, M.C. Hersam, Nat. Nanotechnol. 1, 60 (2006).

    Google Scholar 

  38. A.A. Green, M.C. Hersam, Mater. Today 10, 59 (2007).

    Google Scholar 

  39. R. Martel, ACS Nano 2, 2195 (2008).

    Google Scholar 

  40. M.S. Arnold, J. Suntivich, S.I. Stupp, M.C. Hersam, ACS Nano 2, 2291 (2008).

    Google Scholar 

  41. A.A. Green, M.C. Hersam, Nano Lett. 8, 1417 (2008).

    Google Scholar 

  42. A.A. Green, M.C. Duch, M.C. Hersam, Nano Res. 2, 69 (2009).

    Google Scholar 

  43. S. Niyogi, C.G. Densmore, S.K. Doorn, J. Am. Chem. Soc. 131, 1144 (2009).

    Google Scholar 

  44. C. Backes, F. Hauke, C.D. Schmidt, A. Hirsch, Chem. Commun., 2643 (2009).

  45. W.J. Kim, N. Nair, C.Y. Lee, M.S. Strano, J. Phys. Chem. C 112, 7326 (2008).

    Google Scholar 

  46. K. Yanagi, T. Iitsuka, S. Fujii, H. Kataura, J. Phys. Chem. C 112, 18889 (2008).

    Google Scholar 

  47. N. Stiirzl, F. Hennrich, S. Lebedkin, M.M. Kappes, J. Phys. Chem. C 113, 14628 (2009).

    Google Scholar 

  48. J.A. Fagan, M.L. Becker, J. Chun, E.K. Hobbie, Adv. Mater. 20, 1609 (2008).

    Google Scholar 

  49. A.A. Green, M.C. Hersam, Nat. Nanotechnol. 4, 64 (2009).

    Google Scholar 

  50. D.A. Tsyboulski, Y. Hou, N. Fakhri, S. Ghosh, R. Zhang, S.M. Bachilo, M. Pasquali, L. Chen, J. Liu, R.B. Weisman, Nano Lett. 9, 3282 (2009).

    Google Scholar 

  51. X.Y. Deng, D. Xiong, H.F. Wang, D.D. Chen, Z. Jiao, H.J. Zhang, M.H. Wu, Carbon 47, 1608 (2009).

    Google Scholar 

  52. X. Sun, S. Zaric, D. Daranciang, K. Welsher, Y. Lu, X. Li, H. Dai, J. Am. Chem. Soc. 130, 6551 (2008).

    Google Scholar 

  53. M.F. Zhang, T. Yamaguchi, S. Iijima, M. Yudasaka, J. Phys. Chem. C 113, 11184 (2009).

    Google Scholar 

  54. X.M. Sun, S.M. Tabakman, W.S. Seo, L. Zhang, G.Y. Zhang, S. Sherlock, L. Bai, H.J. Dai, Angew. Chem. Int. Ed. 48, 939 (2009).

    Google Scholar 

  55. A.A. Green, M.C. Hersam, Nano Lett. 9, 4031 (2009).

    Google Scholar 

  56. Y. Miyata, K. Yanagi, Y. Maniwa, H. Kataura, J. Phys. Chem. C 112, 13187 (2008).

    Google Scholar 

  57. J. Crochet, M. Clemens, T. Hertel, J. Am. Chem. Soc. 129, 8058 (2007).

    Google Scholar 

  58. Y.Z. Ma, M.W. Graham, G.R. Fleming, A.A. Green, M.C. Hersam, Phys. Rev. Lett. 101, 217402 (2008).

    Google Scholar 

  59. Z.P. Zhu, J. Crochet, M.S. Arnold, M.C. Hersam, H. Ulbricht, D. Resasco, T. Hertel, J. Phys. Chem. C 111, 3831 (2007).

    Google Scholar 

  60. L. Kavan, O. Frank, A.A. Green, M.C. Hersam, J. Koltai, V. Zolyomi, J. Kurti, L. Dunsch, J. Phys. Chem. C 112, 14179 (2008).

    Google Scholar 

  61. R. Fleurier, J.S. Lauret, U. Lopez, A. Loiseau, Adv. Funct. Mater. 19, 2219 (2009).

    Google Scholar 

  62. Y. Sato, K. Yanagi, Y. Miyata, K. Suenaga, H. Kataura, S. Iijima, Nano Lett. 8, 3151 (2008).

    Google Scholar 

  63. H.H. Qian, C. Georgi, N. Anderson, A.A. Green, M.C. Hersam, L. Novotny, A. Hartschuh, Nano Lett. 8, 1363 (2008).

    Google Scholar 

  64. H. Qian, P.T. Araujo, C. Georgi, T. Gokus, N. Hartmann, A.A. Green, A. Jorio, M.C. Hersam, L. Novotny, A. Hartschuh, Nano Lett. 8, 2706 (2008).

    Google Scholar 

  65. A.V. Naumov, O.A. Kuznetsov, A.R. Harutyunyan, A.A. Green, M.C. Hersam, D.E. Resasco, P.N. Nikolaev, R.B. Weisman, Nano Lett. 9, 3203 (2009).

    Google Scholar 

  66. K. Yanagi, Y. Miyata, H. Kataura, Appl. Phys. Express 1, 034003 (2008).

    Google Scholar 

  67. K. Yanagi, Y. Miyata, T. Tanaka, S. Fujii, D. Nishide, H. Kataura, Diamond Relat. Mater. 18, 935 (2009).

    Google Scholar 

  68. J.L. Blackburn, T.M. Barnes, M.C. Beard, Y.H. Kim, R.C. Tenent, T.J. McDonald, B. To, T.J. Coutts, M.J. Heben, ACS Nano 2, 1266 (2008).

    Google Scholar 

  69. T.M. Barnes, J.L. Blackburn, J. van de Lagemaat, T.J. Coutts, M.J. Heben, ACS Nano 2, 1968 (2008).

    Google Scholar 

  70. M. Engel, J.P. Small, M. Steiner, M. Freitag, A.A. Green, M.C. Hersam, P. Avouris, ACS Nano 2, 2445 (2008).

    Google Scholar 

  71. L. Nougaret, H. Happy, G. Dambrine, V. Derycke, J.P. Bourgoin, A.A. Green, M.C. Hersam, Appl. Phys. Lett. 94, 243505 (2009).

    Google Scholar 

  72. T. Tanaka, H.H. Jin, Y. Miyata, H. Kataura, Appl. Phys. Express 1, 114001 (2008).

    Google Scholar 

  73. K. Moshammer, F. Hennrich, M.M. Kappes, Nano Res. 2, 599 (2009).

    Google Scholar 

  74. T. Tanaka, H. Jin, Y. Miyata, S. Fujii, H. Suga, Y. Naitoh, T. Minari, T. Miyadera, K. Tsukagoshi, H. Kataura, Nano Lett. 9, 1497 (2009).

    Google Scholar 

  75. S. Fujii, T. Tanaka, Y. Miyata, H. Suga, Y. Naitoh, T. Minari, T. Miyadera, K. Tsukagoshi, H. Kataura, Appl. Phys. Express 2, 071601 (2009).

    Google Scholar 

  76. Y.M. Li, D. Mann, M. Rolandi, W. Kim, A. Ural, S. Hung, A. Javey, Nano Lett. 4, 317 (2004).

    Google Scholar 

  77. B. Wang, C.H.P. Poa, L. Wei, L.J. Li, Y.H. Yang, Y. Chen, J. Am. Chem. Soc. 129, 9014 (2007).

    Google Scholar 

  78. D. Ciuparu, Y. Chen, S. Lim, G.L. Haller, L. Pfefferle, J. Phys. Chem. B 108, 503 (2004).

    Google Scholar 

  79. Y. Chen, D. Ciuparu, S.Y. Lim, Y.H. Yang, G.L. Haller, L. Pfefferle, J. Catal. 225, 453 (2004).

    Google Scholar 

  80. Y. Chen, D. Ciuparu, S. Lim, Y.H. Yang, G.L. Haller, L. Pfefferle, J. Catal. 226, 351 (2004).

    Google Scholar 

  81. Y.H. Miyauchi, S.H. Chiashi, Y. Murakami, Y. Hayashida, S. Maruyama, Chem. Phys. Lett. 387, 198 (2004).

    Google Scholar 

  82. X.L. Li, X.M. Tu, S. Zaric, K. Welsher, W.S. Seo, W. Zhao, H.J. Dai, J. Am. Chem. Soc. 129, 15770 (2007).

    Google Scholar 

  83. S.M. Bachilo, L. Balzano, J.E. Herrera, F. Pompeo, D.E. Resasco, R.B. Weisman, J. Am. Chem. Soc. 125, 11186 (2003).

    Google Scholar 

  84. L. Ding, A. Tselev, J.Y. Wang, D.N. Yuan, H.B. Chu, T.P. McNicholas, Y. Li, J. Liu, Nano Lett. 9, 800 (2009).

    Google Scholar 

  85. P. Nikolaev, M.J. Bronikowski, R.K. Bradley, F. Rohmund, D.T. Colbert, K.A. Smith, R.E. Smalley, Chem. Phys. Lett. 313, 91 (1999).

    Google Scholar 

  86. A. Thess, R. Lee, P. Nikolaev, H.J. Dai, P. Petit, J. Robert, C.H. Xu, Science 273, 483 (1996).

    Google Scholar 

  87. Y. Wang, Y.Q. Liu, X.L. Li, L.C. Cao, D.C. Wei, H.L. Zhang, D.C. Shi, G. Yu, H. Kajiura, Y.M. Li, Small 3, 1486 (2007).

    Google Scholar 

  88. L. Dai, Carbon Nanotechnology: Recent Developments in Chemistry, Physics, Materials Science and Applications (Elsevier, Oxford, 2006).

    Google Scholar 

  89. W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, G. Wang, Science 274, 1701 (1996).

    Google Scholar 

  90. Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, P.N. Provencio, Science 282, 1105 (1998).

    Google Scholar 

  91. S.S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H.J. Dai, Science 283, 512 (1999).

    Google Scholar 

  92. K. Hata, D.N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima, Science 306, 1362 (2004).

    Google Scholar 

  93. G. Eres, A.A. Kinkhabwala, H.T. Cui, D.B. Geohegan, A.A. Puretzky, D.H. Lowndes, J. Phys. Chem. B 109, 16684 (2005).

    Google Scholar 

  94. G.Y. Zhang, D. Mann, L. Zhang, A. Javey, Y.M. Li, E. Yenilmez, Q. Wang, Proc. Nat. Acad. Sci. U.S.A. 102, 16141 (2005).

    Google Scholar 

  95. Y.Q. Xu, E. Flor, M.J. Kim, B. Hamadani, H. Schmidt, R.E. Smalley, R.H. Hauge, J. Am. Chem. Soc. 128, 6560 (2006).

    Google Scholar 

  96. L. Qu, L. Dai, Adv. Mater. 19, 3844 (2007).

    Google Scholar 

  97. L.T. Qu, F. Du, L.M. Dai, Nano Lett. 8, 2682 (2008).

    Google Scholar 

  98. E. Joselevich, C.M. Lieber, Nano Lett. 2, 1137 (2002).

    Google Scholar 

  99. A. Ural, Y.M. Li, H.J. Dai, Appl. Phys. Lett. 81, 3464 (2002).

    Google Scholar 

  100. S.M. Huang, B. Maynor, X.Y. Cai, J. Liu, Adv. Mater. 15, 1651 (2003).

    Google Scholar 

  101. S.M. Huang, X.Y. Cai, J. Liu, J. Am. Chem. Soc. 125, 5636 (2003).

    Google Scholar 

  102. L.M. Huang, X.D. Cui, B. White, S.P. O’Brien, J. Phys. Chem. B 108, 16451 (2004).

    Google Scholar 

  103. A. Ismach, L. Segev, E. Wachtel, E. Joselevich, Angew. Chem. Int. Ed. 43, 6140 (2004).

    Google Scholar 

  104. S. Han, X.L. Liu, C.W. Zhou, J. Am. Chem. Soc. 127, 5294 (2005).

    Google Scholar 

  105. C. Kocabas, M. Shim, J.A. Rogers, J. Am. Chem. Soc. 128, 4540 (2006).

    Google Scholar 

  106. C. Kocabas, S.H. Hur, A. Gaur, M.A. Meitl, M. Shim, J.A. Rogers, Small 1, 1110 (2005).

    Google Scholar 

  107. D.N. Yuan, L. Ding, H.B. Chu, Y.Y. Feng, T.P. McNicholas, J. Liu, Nano Lett. 8, 2576 (2008).

    Google Scholar 

  108. L. Ding, D.N. Yuan, J. Liu, J. Am. Chem. Soc. 130, 5428 (2008).

    Google Scholar 

  109. K. Kamaras, M.E. Itkis, H. Hu, B. Zhao, R.C. Haddon, Science 301, 1501 (2003).

    Google Scholar 

  110. L. An, Q.A. Fu, C.G. Lu, J. Liu, J. Am. Chem. Soc. 126, 10520 (2004).

    Google Scholar 

  111. K. Balasubramanian, R. Sordan, M. Burghard, K. Kern, Nano Lett. 4, 827 (2004).

    Google Scholar 

  112. R. Seidel, A.P. Graham, E. Unger, G.S. Duesberg, M. Liebau, W. Steinhoegl, F. Kreupl, W. Hoenlein, Nano Lett. 4, 831 (2004).

    Google Scholar 

  113. G.Y. Zhang, P.F. Qi, X.R. Wang, Y.R. Lu, X.L. Li, R. Tu, S. Bangsaruntip, D. Mann, L. Zhang, H.J. Dai, Science 314, 974 (2006).

    Google Scholar 

  114. M. Kanungo, H. Lu, G.G. Malliaras, G.B. Blanchet, Science 323, 234 (2009).

    Google Scholar 

  115. M.S. Strano, C.A. Dyke, M.L. Usrey, P.W. Barone, M.J. Allen, H.W. Shan, C. Kittrell, R.H. Hauge, J.M. Tour, R.E. Smalley, Science 301, 1519 (2003).

    Google Scholar 

  116. P.C. Collins, M.S. Arnold, P. Avouris, Science 292, 706 (2001).

    Google Scholar 

  117. P.G. Collins, M. Hersam, M. Arnold, R. Martel, P. Avouris, Phys. Rev. Lett. 86, 3128 (2001).

    Google Scholar 

  118. J.L. Bahr, J.P. Yang, D.V. Kosynkin, M.J. Bronikowski, R.E. Smalley, J.M. Tour, J. Am. Chem. Soc. 123, 6536 (2001).

    Google Scholar 

  119. Y.H. Wang, M.J. Kim, H.W. Shan, C. Kittrell, H. Fan, L.M. Ericson, W.F. Hwang, S. Arepalli, R.H. Hauge, R.E. Smalley, Nano Lett. 5, 997 (2005).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Hersam, M.C. Recent Developments in Carbon Nanotube Sorting and Selective Growth. MRS Bulletin 35, 315–321 (2010). https://doi.org/10.1557/mrs2010.554

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2010.554

Navigation