Skip to main content

Advertisement

Log in

Nonpolar and Semipolar Group III Nitride-Based Materials

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

GaN and its alloys with InN and AlN are materials systems that have enabled the revolution in solid-state lighting and high-power/high-frequency electronics. GaN-based materials naturally form in a hexagonal wurtzite structure and are naturally grown in a (0001) c-axis orientation. Because the wurtzite structure is polar, GaN-based heterostructures have large internal electric fields due to discontinuities in spontaneous and piezoelectric polarization. For optoelectronic devices, such as light-emitting diodes and laser diodes, the internal electric field is generally deleterious as it causes a spatial separation of electron and hole wave functions in the quantum wells, which, in turn, likely decreases efficiency. Growth of GaN-based heterostructures in alternative orientations, which have reduced (semipolar orientations) or no polarization (nonpolar) in the growth direction, has been a major area of research in recent years. This issue highlights many of the key developments in nonpolar and semipolar nitride materials and devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.P. Maruska, J.J. Tietjen, Appl. Phys. Lett. 15, 327 (1969).

    Google Scholar 

  2. H.P. Maruska, D.A. Stevenson, J.I. Pankove, Appl. Phys. Lett. 22, 303 (1973).

    Google Scholar 

  3. H. Amano, N. Sawaki, I. Akasaki, Y. Toyoda, Appl. Phys. Lett. 48, 333 (1986).

    Google Scholar 

  4. H. Amano, M. Kito, K.I. Hiramatsu, I. Akasaki, Jpn. J. Appl. Phys. 28, L2112 (1989).

    Google Scholar 

  5. S. Nakamura, Jpn. J. Appl. Phys. 30, L1705 (1991).

    Google Scholar 

  6. S. Nakamura, T. Mukai, M. Senoh, Jpn. J. Appl. Phys. 30, L1998 (1991).

    Google Scholar 

  7. S. Nakamura, N. Iwasa, M. Senoh, T. Mukai, Jpn. J. Appl. Phys. 31, 1258 (1992).

    Google Scholar 

  8. S. Nakamura, T. Mukai, M. Senoh, Appl. Phys. Lett. 64, 1687 (1994).

    Google Scholar 

  9. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, Jpn. J. Appl. Phys. 35, L74 (1996).

    Google Scholar 

  10. A. Bykhovski, B. Gelmont, M. Shur, J. Appl. Phys. 74, 6734 (1993).

    Google Scholar 

  11. S. Chichibu, T. Azuhata, T. Sota, S. Nakamura, Appl. Phys. Lett. 69, 4188 (1996).

    Google Scholar 

  12. T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, I. Akasaki, Jpn. J. Appl. Phys. 36, L382 (1997).

    Google Scholar 

  13. J.S. Im, H. Kollmer, J. Off, A. Sohmer, F. Scholz, A. Hangleiter, Phys. Rev. B 57, R9435 (1998).

    Google Scholar 

  14. R. Resta, Ferroelectrics 136, 51 (1992).

    Google Scholar 

  15. R.D. Kingsmith, D. Vanderbilt, Phys. Rev. B 47, 1651 (1993).

    Google Scholar 

  16. D. Vanderbilt, R.D. Kingsmith, Phys. Rev. B 48, 4442 (1993).

    Google Scholar 

  17. R. Resta, J. Phys.: Condens. Matter 12, R107 (2000).

    Google Scholar 

  18. R. Resta, J. Mol. Struct. (Theochem.) 709, 201 (2004).

    Google Scholar 

  19. F. Bernardini, V. Fiorentini, D. Vanderbilt, Phys. Rev. B 56, 10024 (1997).

    Google Scholar 

  20. L.F. Eastman, U.K. Mishra, IEEE Spectrum 39 (5), 28 (2002).

    Google Scholar 

  21. U.K. Mishra, L. Shen, T.E. Kazior, Y.-F. Wu, Proc. IEEE 96, 287 (2008).

    Google Scholar 

  22. Y.C. Shen, G.O. Mueller, S. Watanabe, N.F. Gardner, A. Munkholm, M.R. Krames, Appl. Phys. Lett. 91, 141101 (2007).

    Google Scholar 

  23. H.P. Maruska, L.J. Anderson, D.A. Stevenson, J. Electrochem. Soc. 121, 1202 (1974).

    Google Scholar 

  24. M. Sano, M. Aoki, Jpn. J. Appl. Phys. 15 (10) 1943 (1976).

    Google Scholar 

  25. A. Shintani, S. Minagawa, J. Electrochem. Soc. 123 (10) 1575 (1976).

    Google Scholar 

  26. R. Madar, D. Michel, G. Jacob, M. Boulou, J. Cryst. Growth 40, 239 (1977).

    Google Scholar 

  27. T. Sasaki, S. Zembutsu, J. Appl. Phys. 61 (7) 2533 (1987).

    Google Scholar 

  28. T. Lei, K.F. Ludwig, Jr., T.D. Moustakas, J. Appl. Phys. 74 (7) 4430 (1993).

    Google Scholar 

  29. W.A. Melton, J.I. Pankove, J. Cryst. Growth 178, 168 (1997).

    Google Scholar 

  30. R.J. Molnar, “Hydride Vapor Phase Epitaxial Growth of III–V Nitrides,” in Gallium Nitride (GaN) II, vol. 57 of Semiconductors and Semimetals, J.I. Pankove and T.D. Moustakas eds. (Elsevier, New York, 1998), pp. 1–31.

    Google Scholar 

  31. T. Takeuchi, H. Amano, I. Akasaki, Jpn. J. Appl. Phys., Part 1 39, 413 (2000).

  32. P. Waltereit, O. Brandt, A. Trampert, H.T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, K.H. Ploog, Nature 406, 865 (2000).

    Google Scholar 

  33. M.D. Craven, S.H. Lim, F. Wu, J.S. Speck, S.P. DenBaars, Appl. Phys. Lett. 81, 469 (2002).

    Google Scholar 

  34. H.M. Ng, Appl. Phys. Lett. 80, 4369 (2002).

    Google Scholar 

  35. T. Koida, S.F. Chichibu, T. Sota, M.D. Craven, B.A. Haskell, J.S. Speck, S.P. DenBaars, S. Nakamura, Appl. Phys. Lett. 84, 3768 (2004).

    Google Scholar 

  36. T.J. Baker, B.A. Haskell, F. Wu, P.T. Fini, J.S. Speck, S. Nakamura, Jpn. J. Appl. Phys. 44, L920 (2005).

    Google Scholar 

  37. A.E. Romanov, T.J. Baker, S. Nakamura, J.S. Speck, J. Appl. Phys. 100, 023522 (2006).

    Google Scholar 

  38. P. Paskov, R. Schifano, B. Monemar, T. Paskova, S. Figge, D. Hommel, J. Appl. Phys. 98, 093519 (2005).

    Google Scholar 

  39. N.F. Gardner, J.C. Kim, J.J. Wierer, Y.C. Shen, M.R. Krames, Appl. Phys. Lett. 86, 111101 (2002).

    Google Scholar 

  40. A.A. Yamaguchi, Jpn. J. Appl. Phys. 46, L789 (2007).

    Google Scholar 

  41. M. Funato, M. Ueda, Y. Kawakami, Y. Narukawa, T. Kosugi, M. Takahashi, T. Mukai, Jpn. J. Appl. Phys. 45, L659 (2006).

    Google Scholar 

  42. D.F. Feezell, M.C. Schmidt, R.M. Farrell, K.C. Kim, M. Saito, K. Fujito, D.A. Cohen, J.S. Speck, S.P. DenBaars, S. Nakamura, Jpn. J. Appl. Phys. 46, L284 (2007).

    Google Scholar 

  43. J.P. Ibbetson, P.T. Fini, K.D. Ness, S.P. DenBaars, J.S. Speck, U.K. Mishra. Appl. Phys. Lett. 77, 250 (2000).

    Google Scholar 

  44. A. Chakraborty, B.A. Haskell, S. Keller, J.S. Speck, S.P. DenBaars, S. Nakamura, U.K. Mishra, Appl. Phys. Lett. 85, 5143 (2004).

    Google Scholar 

  45. A. Chakraborty, B.A. Haskell, S. Keller, J.S. Speck, S.P. DenBaars, S. Nakamura, U.K. Mishra, Jpn. J. Appl. Phys., Part 2 44, L173 (2005).

    Google Scholar 

  46. T. Onuma, T. Koyama, A. Chakraborty, M. McLaurin, B.A. Haskell, P.T. Fini, S. Keller, S.P. DenBaars, J.S. Speck, S. Nakamura, U.K. Mishra, T. Sota, S.F. Chichibu, J. Vac. Sci. Technol. B 25, 1523 (2007).

    Google Scholar 

  47. T. Koyama, T. Onuma, H. Masui, A. Chakraborty, B.A. Haskell, S. Keller, U.K. Mishra, J.S. Speck, S. Nakamura, S.P. DenBaars, T. Sota, S.F. Chichibu, Appl. Phys. Lett. 89, 091906 (2006).

    Google Scholar 

  48. K. Okamoto, H. Ohta, D. Nakagawa, M. Sonobe, J. Ichihara, H. Takasu, Jpn. J. Appl. Phys. 45, L1197 (2006).

    Google Scholar 

  49. M.C. Schmidt, K.C. Kim, H. Sato, N. Fellows, S. Nakamura, S.P. DenBaars, J.S. Speck, Jpn. J. Appl. Phys. 46, L126 (2007).

    Google Scholar 

  50. T. Onuma, H. Amaike, M. Kubota, K. Okamoto, H. Ohta, J. Ichihara, H. Takasu, S.F. Chichibu, Appl. Phys. Lett. 91, 181903 (2007).

    Google Scholar 

  51. H. Zhong, A. Tyagi, N.N. Fellows, F. Wu, R.B. Chung, M. Saito, K. Fujito, J.S. Speck, S.P. DenBaars, S. Nakamura, Appl. Phys. Lett. 90, 233504 (2007).

    Google Scholar 

  52. S.F. Chichibu, A. Uedono, T. Onuma, B.A. Haskell, A. Chakraborty, T, Koyama, P.T. Fini, S. Keller, S.P. DenBaars, J.S. Speck, U.K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, T. Sota, Nat. Mater. 5, 810 (2006).

    Google Scholar 

  53. S.F. Chichibu, A. Uedono, T. Onuma, B.A. Haskell, A. Chakraborty, T, Koyama, P.T. Fini, S. Keller, S.P. DenBaars, J.S. Speck, U.K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, T. Sota, Philos. Mag. 87, 2019 (2007).

    Google Scholar 

  54. M.C. Schmidt, K.C. Kim, R.M. Farrell, D.F. Feezell, D.A. Cohen, M. Saito, K. Fujito, J.S. Speck, S.P. DenBaars, S. Nakamura, Jpn. J. Appl. Phys. 46, L190 (2007).

    Google Scholar 

  55. K. Okamoto, H. Ohta, S.F. Chichibu, J. Ichihara, H. Takasu, Jpn. J. Appl. Phys. 46, L187 (2007).

    Google Scholar 

  56. K. Okamoto, T. Tanaka, M. Kubota, H. Ohta, Jpn. J. Appl. Phys. 46, L820 (2007).

    Google Scholar 

  57. M. Kubota, K. Okamoto, T. Tanaka, H. Ohta, Appl. Phys. Express 1, 011102 (2008).

    Google Scholar 

  58. Y. Tsuda, M. Ohta, P.O. Vaccaro, S. Ito, S. Hirukawa, Y. Kawaguchi, Y. Fujishiro, Y. Takahira, Y. Ueta, T. Takakura, T. Yuasa, Appl. Phys. Express 1, 011104 (2008).

    Google Scholar 

  59. K. Okamoto, T. Tanaka, M. Kubota, Appl. Phys. Express 1, 072201 (2008).

    Google Scholar 

  60. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Matsushita, T. Mukai, Appl. Phys. Lett. 76, 22 (2000).

    Google Scholar 

  61. S. Nagahama, T. Yanamoto, M. Sano, T. Mukai, Jpn. J. Appl. Phys. 40, 3075 (2001).

    Google Scholar 

  62. P. Rinke, M. Winkelnkemper, A. Qteish, D. Bimberg, J. Neugebauer, M. Scheffler, Phys. Rev. B 77, 07202 (2008).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Speck, J.S., Chichibu, S.F. Nonpolar and Semipolar Group III Nitride-Based Materials. MRS Bulletin 34, 304–312 (2009). https://doi.org/10.1557/mrs2009.91

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2009.91

Navigation