Skip to main content

Advertisement

Log in

Solid-State Materials for Clean Energy: Insights from Atomic-Scale Modeling

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Fundamental advances in solid-state ionics for energy conversion and storage are crucial in addressing the global challenge of cleaner energy sources. This review aims to demonstrate the valuable role that modern computational techniques now play in providing deeper fundamental insight into materials for solid oxide fuel cells and rechargeable lithium batteries. The scope of contemporary work is illustrated by studies on topical materials encompassing perovskite-type proton conductors, gallium oxides with tetrahedral moieties, apatite-type silicates, and lithium iron phosphates. Key fundamental properties are examined, including mechanisms of ion migration, dopant-defect association, and surface structures and crystal morphologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.S. Islam, J. Mater. Chem. 17, 3069 (2007).

    Google Scholar 

  2. D.J.L. Brett, A. Atkinson, N.P. Brandon, S.J. Skinner, Chem. Soc. Rev. 37, 1568 (2008).

    Google Scholar 

  3. A. Atkinson, S. Barnett, R.J. Gorte, J.T.S. Irvine, A.J. McEvoy, M. Mogensen, S.C. Singhal, J. Vohs., Nat. Mater. 3, 17 (2004).

    Google Scholar 

  4. J.M. Tarascon, M. Armand, Nature 414, 359 (2001).

    Google Scholar 

  5. M. Armand, J.M. Tarascon, Nature 451, 652 (2008).

    Google Scholar 

  6. A.S. Arico, P.G. Bruce, B. Scrosati, J.M. Tarascon, W. Van Schalkwijk, Nat. Mater. 4, 366 (2005).

    Google Scholar 

  7. M.S. Whittingham, Chem. Rev. 104, 4271 (2004).

    Google Scholar 

  8. C.R.A. Catlow, Ed., Computer Modelling in Inorganic Crystallography (Academic Press, San Diego, 1997).

    Google Scholar 

  9. W. Koch, M.C. Holthausen, A Chemist’s Guide to Density Functional Theory (Wiley-VCH, Weinheim, 2001).

    Google Scholar 

  10. J.D. Gale, J. Chem. Soc., Faraday Trans. 93, 629 (1997).

    Google Scholar 

  11. W. Smith, T.R. Forester, J. Mol. Graphics 14, 136 (1994).

    Google Scholar 

  12. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Google Scholar 

  13. M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).

    Google Scholar 

  14. K.D. Kreuer, S.J. Paddison, E. Spohr, M. Schuster, Chem. Rev. 104, 4637 (2004).

    Google Scholar 

  15. T. Norby, M. Wideroe, R. Glockner, Y. Larring., Dalton Trans. 19, 3012 (2004).

    Google Scholar 

  16. M.S. Islam, R.A. Davies, J.D. Gale, Chem. Mater. 13, 2049 (2001).

    Google Scholar 

  17. J.A. Kilner, Solid State Ionics 129, 13 (2000).

    Google Scholar 

  18. T. Norby, J. Mater. Chem. 11, 11 (2000).

    Google Scholar 

  19. R.J. Phillips, N. Bonanos, F.W. Poulsen, E.O. Ahlgren, Solid State Ionics, 125, 389 (1999).

    Google Scholar 

  20. E. Fabbri, S. Licoccia, E. Traversa, E.D. Wachsman, Fuel Cells, 9, 128 (2009).

    Google Scholar 

  21. G.C. Mather, F.M. Figueiredo, J.R. de Paz, S. Garcia-Martin, Inorg. Chem. 47, 921 (2008).

    Google Scholar 

  22. R. Hempelmann, C. Karmonik, T. Matzke, M. Cappadonia, U. Stimming, T. Springer, M.A. Adams, Solid State Ionics 77, 152 (1995).

    Google Scholar 

  23. M.S. Islam, R.A. Davies, J. Mater. Chem. 14, 86 (2004).

    Google Scholar 

  24. A. Jones, M.S. Islam, J. Phys. Chem. C 112, 4455 (2008).

    Google Scholar 

  25. S. Nakayama, Y. Higuchi, Y. Kondo, M. Sakamoto, Solid State Ionics 170, 219 (2004).

    Google Scholar 

  26. J.E.H. Sansom, D. Richings, P.R. Slater, Solid State Ionics 139, 205 (2001).

    Google Scholar 

  27. A. Najib, J.E.H. Sansom, J.R. Tolchard, P.R. Slater, M.S. Islam, Dalton Trans. 3106 (2004).

  28. E. Kendrick, M.S. Islam, P.R. Slater, J. Mater. Chem. 17, 3104 (2007).

    Google Scholar 

  29. L. Leon-Reina, J.M. Porras-Vasquez, E.R. Losilla, M.A.G. Aranda, J. Solid State Chem. 180, 1250 (2007).

    Google Scholar 

  30. L. León-Reina, E.R. Losilla, M. Martínez-Lara, S. Bruque, M.A.G. Aranda, J. Mater. Chem. 14, 1142 (2004).

    Google Scholar 

  31. H. Yoshioka, Y. Nojiri, S. Tanase, Solid State Ionics 179, 2165 (2008).

    Google Scholar 

  32. P.J. Panteix, E. Bechade, I. Julien, P. Abelard, D. Bernache-Assollant, Mater. Res. Bull. 43, 1223 (2008).

    Google Scholar 

  33. J.R. Tolchard, M.S. Islam, P.R. Slater, J. Mater. Chem. 13, 1956 (2003).

    Google Scholar 

  34. J.E.H. Sansom, J.R. Tolchard, D. Apperley, M.S. Islam, P.R. Slater, J. Mater. Chem. 16, 1410 (2006).

    Google Scholar 

  35. A. Jones, M.S. Islam, P.R. Slater, Chem. Mater. 20, 5055 (2008).

    Google Scholar 

  36. E. Kendrick, M.S. Islam, P.R. Slater, Chem. Commun. 715 (2008).

  37. R. Haugsrud, T. Norby, Nat. Mater. 5, 193 (2006).

    Google Scholar 

  38. F. Schönberger, E. Kendrick, M.S. Islam, P.R. Slater, Solid State Ionics 176, 2951 (2005).

    Google Scholar 

  39. E. Kendrick, J. Kendrick, K.S. Knight, M.S. Islam, P.R. Slater, Nat. Mater. 6, 871 (2007).

    Google Scholar 

  40. A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, J. Electrochem. Soc. 144, 1188 (1997).

    Google Scholar 

  41. N. Ravet, Y. Chouinard, J.F. Magnan, S. Besner, M. Gauthier, M. Armand, J. Power Sources 97–98, 503 (2001).

    Google Scholar 

  42. S.Y. Chung, J.T. Bloking, Y.M. Chiang, Nat. Mater. 1, 123 (2002).

    Google Scholar 

  43. P. Subramanya Herle, B. Ellis, N. Coombs, L.F. Nazar, Nat. Mater. 3, 147 (2004).

    Google Scholar 

  44. C. Delacourt, L. Laffont, R. Bouchet, C. Wurm, J.B. Leriche, M. Morcrette, J.M. Tarason, C. Masquelier, J. Electrochem. Soc. 152, A913 (2005).

    Google Scholar 

  45. H. Gabrisch, J.D. Wilcox, M.M. Doeff, Electrochem. Solid-State Lett. 9, A360 (2006).

    Google Scholar 

  46. R. Amin, P. Balaya, J. Maier, Electrochem. Solid-State Lett. 10, A13 (2007).

    Google Scholar 

  47. J. Chen, M.J. Vacchio, S. Wang, N. Chernova, P. Y. Zavalij, M.S. Whittingham, Solid State Ionics 178, 1676 (2008).

    Google Scholar 

  48. T. Muraliganth, A.V. Murugan, A. Manthiram, J. Mater. Chem. 18, 5661 (2008).

    Google Scholar 

  49. M.S. Islam, D.J. Driscoll, C.A.J. Fisher, P.R. Slater, Chem. Mater. 17, 5085 (2005).

    Google Scholar 

  50. C.A.J. Fisher, V.M. Hart Prieto, M.S. Islam, Chem. Mater. 20, 5907 (2008).

    Google Scholar 

  51. S.Y. Chung, S.Y. Choi, T. Yamamoto, Y. Ikuhara, Phys. Rev. Lett. 100, 125502 (2008).

    Google Scholar 

  52. C.M.B. Henderson, K.S. Knight, S.A.T. Redfern, B.J. Wood, Science 271, 1713 (1996).

    Google Scholar 

  53. D. Morgan, A. Van der Ven, G. Ceder, Electrochem. Solid-State Lett. 7, A30 (2004).

    Google Scholar 

  54. S. Nishimura, Y. Kobayashi, K. Ohayama, R. Kanno, M. Yashima, Y. Yamaguchi, A. Yamada, Nat. Mater. 7, 707 (2008).

    Google Scholar 

  55. B. Ellis, H.K. Wang, W.R.M. Makahnouk, L.F. Nazar, J. Mater. Chem. 17, 3248 (2007).

    Google Scholar 

  56. C.A.J. Fisher, M.S. Islam, J. Mater. Chem. 18, 1209 (2008).

    Google Scholar 

  57. S. Franger, F. Le Cras, C. Bourbon, C. Benoit, P. Soudan, J. Santos-Peña, Recent Res. Devel. Electrochem. 8, 225 (2005).

    Google Scholar 

  58. G. Chen, X. Song, T.J. Richardson, Electrochem. Solid-State Lett. 9, A295 (2006).

    Google Scholar 

  59. G.C. Mather, M.S. Islam, Chem. Mater. 17, 1736 (2005).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Islam, M.S., Slater, P.R. Solid-State Materials for Clean Energy: Insights from Atomic-Scale Modeling. MRS Bulletin 34, 935–941 (2009). https://doi.org/10.1557/mrs2009.216

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2009.216

Navigation