Skip to main content
Log in

Piezoresponse Force Microscopy: A Window into Electromechanical Behavior at the Nanoscale

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Piezoresponse force microscopy (PFM) is a powerful method widely used for nanoscale studies of the electromechanical coupling effect in various materials systems. Here, we review recent progress in this field that demonstrates great potential of PFM for the investigation of static and dynamic properties of ferroelectric domains, nanofabrication and lithography, local functional control, and structural imaging in a variety of inorganic and organic materials, including piezoelectrics, semiconductors, polymers, biomolecules, and biological systems. Future pathways for PFM application in high-density data storage, nanofabrication, and spectroscopy are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Alexe, A. Gruverman, Eds., Ferroelectrics at Nanoscale: Scanning Probe Microscopy Approach (Springer, New York, 2004).

    Google Scholar 

  2. A. Grigoriev, D.H. Do, D.M. Kim, C.B. Eom, B. Adams, E.M. Dufresne, P.G. Evans, Phys. Rev. Lett. 96, 187601 (2006).

    Google Scholar 

  3. T. Nattermann, Y. Shapir, I. Vilfan, Phys. Rev. B 42, 8577 (1990).

    Google Scholar 

  4. A. Agronin, M. Molotskii, Y. Rosenwaks, G. Rosenman, B.J. Rodriguez, A.I. Kingon, A. Gruverman, J. Appl. Phys. 99, 104102 (2006).

    Google Scholar 

  5. T. Tybell, P. Paruch, T. Giamarchi, J.-M. Triscone, Phys. Rev. Lett. 89, 097601 (2002).

    Google Scholar 

  6. N.A. Pertsev, A Petraru, H. Kohlstedt, R. Waser, I.K. Bdikin, D.A. Kiselev, A.L. Kholkin, Nanotechnology 19, 375703 (2008).

    Google Scholar 

  7. P. Paruch, T. Giamarchi, J.-M. Triscone, Phys. Rev. Lett. 94, 197601 (2005).

    Google Scholar 

  8. G. Catalan, H. Béa, S. Fusil, M. Bibes, P. Paruch, A. Barthélémy, J.F. Scott, Phys. Rev. Lett. 100, 027602 (2008).

    Google Scholar 

  9. V. Likodimos, M. Labardi, X.K. Orlik, L. Pardi, M. Allegrini, S. Emonin, O. Marti, Phys. Rev. B 63, 064104 (2001).

    Google Scholar 

  10. V. Likodimos, M. Labardi, M. Allegrini, Phys. Rev. B 66, 024104 (2002).

    Google Scholar 

  11. V.V. Shvartsman, A.L. Kholkin, J. Appl. Phys. 101, 064108 (2007).

    Google Scholar 

  12. D.J. Kim, J.Y. Jo, T.H. Kim, S.M. Yang, B. Chen, Y.S. Kim, T.W. Noh, Appl. Phys. Lett. 91, 132903 (2007).

    Google Scholar 

  13. A. Gruverman, B.J. Rodriguez, C. Dehoff, J.D. Waldrep, A.I. Kingon, R.J. Nemanich, J.S. Cross, Appl. Phys. Lett. 87, 082902 (2005).

    Google Scholar 

  14. A. Gruverman, D. Wu, J.F. Scott, Phys. Rev. Lett. 100, 097601 (2008).

    Google Scholar 

  15. J.Y. Jo, H.S. Han, J.-G. Yoon, T.K. Song, S.-H. Kim, T.W. Noh, Phys. Rev. Lett. 99, 267602 (2007).

    Google Scholar 

  16. A. Gruverman, D. Wu, H.-J. Fan, I. Vrejoiu, M. Alexe, R.J. Harrison, J.F. Scott, J. Phys.: Condens. Matter 20, 342201 (2008).

    Google Scholar 

  17. B.J. Rodriguez, X.S. Gao, L.F. Liu, W. Lee, I.I. Naumov, A.M. Bratkovsky, D. Hesse, M. Alexe, Nano Lett. 9, 1127 (2009).

    Google Scholar 

  18. M. Dawber, A. Gruverman, J.F. Scott, J. Physics: Condens. Matter 18, L71 (2006).

    Google Scholar 

  19. G.A. Smolenskii, V.A. Isupov, Dokl. Akad. Nauk SSSR 9, 653 (1954).

    Google Scholar 

  20. L.E. Cross, Ferroelectrics 76, 241 (1987).

    Google Scholar 

  21. S.-E. Park, T.R. Shrout, J. Appl. Phys. 82, 1804 (1987).

    Google Scholar 

  22. H.H. Haertling, Ferroelectrics 75, 25 (1987).

    Google Scholar 

  23. S.B. Vakhrushev, O.E. Kvyatkovksy, A.A. Naberezhnov, N.M. Okuneva, B. Toperverg, Ferroelectrics 90, 173 (1989).

    Google Scholar 

  24. P. Lehnen, W. Kleemann, Th. Woike, R. Pankrath, Phys. Rev. B 64, 224109 (2001).

    Google Scholar 

  25. V.V. Shvartsman, W. Kleemann, T. Lukasiewicz, J. Dec, Phys. Rev. B 77, 054105 (2008).

    Google Scholar 

  26. W. Kleemann, J. Dec, V. V. Shvartsman, Z. Kutnjak, T. Braun, Phys. Rev. Lett. 97, 065702 (2006).

    Google Scholar 

  27. G. Xu, D. Viehland, J.-F. Li, P.M. Gehring, G. Shirane, Phys. Rev. B 68, 212410 (2003).

    Google Scholar 

  28. S.B. Vakhrushev, A.A. Naberezhnov, B. Dkhil, J.-M. Kiat, V. Shvartsman, A. Kholkin, B. Dorner, A. Ivanov, AIP Conf. Proc. 677, 74 (2003).

    Google Scholar 

  29. V. V. Shvartsman, A.L. Kholkin, Phys. Rev. B 69, 014102 (2004).

    Google Scholar 

  30. F. Bai, J.-F. Li, D. Viehland, Appl. Phys. Lett. 85, 2313 (2004).

    Google Scholar 

  31. I.K. Bdikin, V. V. Shvartsman, A.L. Kholkin, Appl. Phys. Lett. 83, 4232 (2003).

    Google Scholar 

  32. V. V. Shvartsman, A.L. Kholkin, A. Orlova, D. Kiselev, A.A. Bogomolov, A. Sternberg, Appl. Phys. Lett. 86, 202907 (2005).

    Google Scholar 

  33. D.A. Kiselev, I.K. Bdikin, E.K. Selezneva, K. Bormanis, A. Sternberg, A.L. Kholkin, J. Phys. D 40, 7109 (2007).

    Google Scholar 

  34. V.V. Shvartsman, A. Yu. Emelyanov, A.L. Kholkin, A. Safari, Appl. Phys. Lett. 81, 117 (2002); V.V. Shvartsman, A.L. Kholkin, M. Tyunina, J. Levoska, Appl. Phys. Lett. 86, 222907 (2005).

    Google Scholar 

  35. A.N. Salak, V.V. Shvartsman, M.P. Seabra, A.L. Kholkin, V.M. Ferreira, J. Phys.: Condens. Matter 16, 2785 (2004).

    Google Scholar 

  36. S.V. Kalinin, B.J. Rodriguez, S. Jesse, P. Maksymovych, K. Seal, A.P. Baddorf, A. Kholkin, R. Proksch, Mater. Today 11, 16 (2008).

    Google Scholar 

  37. F. Bai, J.-F. Li, D. Viehland, Appl. Phys. Lett. 85, 4457 (2004).

    Google Scholar 

  38. O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, L.F. Eastman, J. Phys.: Condens. Matter 14, 3399 (2002).

    Google Scholar 

  39. B.J. Rodriguez, A. Gruverman, A.I. Kingon, R.J. Nemanich, Appl. Phys. Lett. 80, 4166 (2002).

    Google Scholar 

  40. E. Fukada, I. Yasuda, J. Phys. Soc. Jpn. 12, 1158 (1957).

    Google Scholar 

  41. S.B. Lang, Nature 5063, 704 (1966).

    Google Scholar 

  42. E. Fukada, J. Phys. Soc. Jpn. 10, 149 (1955).

    Google Scholar 

  43. E. Fukada, Biorheology 32, 593 (1995).

    Google Scholar 

  44. D.B. Li, D.A. Bonnell, Annu. Rev. Mater. Res. 38, 351 (2008).

    Google Scholar 

  45. T. Hidaka, T. Maruyama, I. Sakai, M. Saitoh, L.A. Wills, R. Hiskes, S.A. Dicarolis, J. Amano, Integr. Ferroelectr. 17, 319 (1997).

    Google Scholar 

  46. Y. Cho, K. Fujimoto, Y. Hiranaga, Y. Wagatsuma, A. Onoe, K. Terabe, K. Kitamura, Appl. Phys. Lett. 81, 4401 (2002).

    Google Scholar 

  47. K. Terabe, S. Takekawa, M. Nakamura, K. Kitamura, S. Higuchi, Y. Gotoh, A. Gruverman, Appl. Phys. Lett. 81, 2044 (2002).

    Google Scholar 

  48. G. Rosenman, P. Urenski, A. Agronin, Y. Rosenwaks, M. Molotski, Appl. Phys. Lett. 82, 103 (2003).

    Google Scholar 

  49. H. Park, J. Jung, D.-K. Min, S. Kim, S. Hong, H. Shin, Appl. Phys. Lett. 84, 1734 (2004).

    Google Scholar 

  50. S.V. Kalinin, A. Gruverman, Eds., Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale (Springer, New York, 2006).

    Google Scholar 

  51. Y. Cho, K. Ohara, Appl. Phys. Lett. 79, 3842 (2001).

    Google Scholar 

  52. H.F. Hamman, Y.C. Martin, H.K. Wickramasinghe, Appl. Phys. Lett. 84, 810 (2004).

    Google Scholar 

  53. Y. Cho, S. Hashimoto, N. Odagawa, K. Ta - naka, Y. Hiranaga, Nanotechnology 17, S137 (2006).

    Google Scholar 

  54. D.B. Li, D.A. Bonnell, Ceram. Int. 34, 157 (2008).

    Google Scholar 

  55. D.B. Li, M.H. Zhao, J. Garra, Nat. Mater. 7, 473 (2008).

    Google Scholar 

  56. M.H. Zhao, D.A. Bonnell, J.M. Vohs, Surf. Sci. 602, 2849 (2008).

    Google Scholar 

  57. Y. Yun, E.I. Altman, J. Am. Chem. Soc. 129, 15684 (2007).

    Google Scholar 

  58. R. Shao, M.P. Nikiforov, D.A. Bonnell, Appl. Phys. Lett. 89, 112904 (2006).

    Google Scholar 

  59. S.V. Kalinin, D.A. Bonnell, T. Alvarez, X. Lei, Z. Hu, J.H. Ferris, Nano Lett. 2, 589 (2002).

    Google Scholar 

  60. D.B. Li, D.R. Strachan, J.H. Ferris, D.A. Bonnell, J. Mater. Res. 21, 935 (2006).

    Google Scholar 

  61. S.V. Kalinin, D.A. Bonnell, T. Alvarez, X. Lei, Z. Hu, Z.H. Ferris, Q. Zhang, S. Dunn, Nano Lett. 2, 589 (2002).

    Google Scholar 

  62. C. Rankin, C. Chou, D. Conklin, D. Bonnell, ACS Nano 1, 234 (2007).

    Google Scholar 

  63. A. Gruverman, Appl. Phys. Lett. 75, 1452 (1999).

    Google Scholar 

  64. C. Harnagea, M. Alexe, J. Schilling, J. Choi, R.B. Wehrspohn, D. Hesse, U. Gösele, Appl. Phys. Lett. 83, 1827 (2003).

    Google Scholar 

  65. Z. Hu, M. Tian, B. Nysten, A.M. Jonas, Nat. Mater. 8, 62 (2009).

    Google Scholar 

  66. S.K. Streiffer, J.A. Eastman, D.D. Fong, C. Thompson, A. Munkholm, M.V. Ramana Murty, O. Auciello, G.R. Bai, G.B. Stephenson, Phys. Rev. Lett. 89, 67601 (2002).

    Google Scholar 

  67. C.F. Quate, Surf. Sci. 386, 259 (1997).

    Google Scholar 

  68. P. Vettiger, J. Brugger, M. Despont, U. Drechsler, U. Durig, W. Haberle, M. Lutwyche, H. Rothuizen, R. Stutz, R. Widmer, G. Binnig, Microelectron. Eng. 46, 11 (1999).

    Google Scholar 

  69. Y. Rosenwaks, D. Dahan, M. Molotskii, G. Rosenman, Appl. Phys. Lett. 86, 012909 (2005).

    Google Scholar 

  70. A.D.L. Humphris, M.J. Miles, J.K. Hobbs, Appl. Phys. Lett. 86, 034106 (2005).

    Google Scholar 

  71. M. Molotskii, E. Winebrand, Phys. Rev. B 71, 132103 (2005).

    Google Scholar 

  72. A.N. Morozovska, E.A Eliseev, S.V. Kalinin, Appl. Phys. Lett. 89, 192901 (2006).

    Google Scholar 

  73. G. Le Rhun, I. Vrejoiu, M. Alexe, Appl. Phys. Lett. 90, 012908 (2007).

    Google Scholar 

  74. G. Le Rhun, I. Vrejoiu, L. Pintilie, D. Hesse, M. Alexe, U. Gösele, Nanotechnology 17, 3154 (2006).

    Google Scholar 

  75. I.K. Bdikin, A.L. Kholkin, A.N. Morozovska, S.V. Svechnikov, S.-H. Kim, S.V. Kalinin, Appl. Phys. Lett. 92, 182909 (2008).

    Google Scholar 

  76. S. Jesse, A.P. Baddorf, S.V. Kalinin, Appl. Phys. Lett. 88, 062908 (2006).

    Google Scholar 

  77. S. Jesse, H.-N. Lee, S.V. Kalinin, Rev. Sci. Instrum. 77, 073702 (2006).

    Google Scholar 

  78. S.V. Kalinin, B.J. Rodriguez, S. Jesse, Y.H. Chu, T. Zhao, R. Ramesh, S. Choudhury, L.Q. Chen, E.A. Eliseev, A.N. Morozovska, Proc. Nat. Acad. Sci. U.S.A. 104, 20204 (2007).

    Google Scholar 

  79. B.J. Rodriguez, S. Jesse, M. Alexe, S.V. Kalinin, Adv. Mater. 20, 109 (2008).

    Google Scholar 

  80. S. Jesse, B.J. Rodriguez, S. Choudhury, A.P. Baddorf, I. Vrejoiu, D. Hesse, M. Alexe, E.A. Eliseev, A.N. Morozovska, J. Zhang, L.-Q Chen, S.V. Kalinin, Nat. Mater. 7, 209 (2008).

    Google Scholar 

  81. I. Vrejoiu, Philos. Mag. 86, 4477 (2006).

    Google Scholar 

  82. S.V. Kalinin, S. Jesse, B.J. Rodriguez, Y.H. Chu, R. Ramesh, E.A. Eliseev, A.N. Morozovska, Phys. Rev. Lett. 100, 155703 (2008).

    Google Scholar 

  83. Y.L. Li, S.Y. Hu, L.Q. Chen, J. Appl. Phys. 97, 034112 (2005).

    Google Scholar 

  84. M.J. Brukman, D.A. Bonnell, Phys. Today 61, 36 (2008).

    Google Scholar 

  85. S.V. Kalinin, B.J. Rodriguez, J. Shin, S. Jesse, V. Grichko, T. Thundat, A.P. Baddorf, A. Gruverman, Ultramicroscopy 106, 334 (2006).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonnell, D.A., Kalinin, S.V., Kholkin, A.L. et al. Piezoresponse Force Microscopy: A Window into Electromechanical Behavior at the Nanoscale. MRS Bulletin 34, 648–657 (2009). https://doi.org/10.1557/mrs2009.176

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2009.176

Navigation