Skip to main content
Log in

Physical Principles of Ionic Polymer–Metal Composites as Electroactive Actuators and Sensors

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

This article introduces and considers the fundamental understanding of ionic polymer–metal composites (IPMCs) functioning as electroactive actuators and sensors. IPMCs consist of ion-exchange polymers acting as base materials and metal layers functioning as electrodes. The actuation and sensing abilities of IPMCs are dependent upon the components of ion-exchange polymers (ionic groups and cations) and electrode materials. In order to improve the bending and sensing performance of the IPMCs, an integral, two-step electroplating technique and a requisite dispersion agent are used during fabrication. Electroding materials also play a key role in determining the properties of IPMCs, and numerous methods in electroding have been tried, making use of various metals, carbon nanotubes, and composites. So far, IPMCs have been adapted as robotic actuators, artificial muscles, and electrical sensors. In the future, it is expected that IPMCs will broadly spread their roles from small-sized biomedical devices to large-scale actuators for aerospace as well as many industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Oguro, Y. Kawami, H. Takenaka, J. Micromachine Soc. 5, 27 (1992).

    Google Scholar 

  2. Y. Abe, A. Mochizuki, T. Kawashima, S. Yamashita, K. Asaka, K. Oguro, Polym. Adv. Technol. 9, 520 (1998).

    Google Scholar 

  3. K. Asaka, K. Oguro, J. Electroanal. Chem. 480, 186 (2000).

    Google Scholar 

  4. M. Shahinpoor, K.J. Kim, Proc. SPIE 3987, 110 (2000).

    Google Scholar 

  5. M. Shahinpoor, K.J. Kim, Smart Mater. Struct. 10, 819 (2001).

    Google Scholar 

  6. K. Sadeghpour, R. Salomon, S. Neogi, Smart Mater. Struct. 1, 172 (1992).

    Google Scholar 

  7. S. Guo, T. Nakamura, T. Fukuda, K. Oguro, Proc. 7th Int. Symp. Micro Mach. Human Sci. (1996) p. 235.

  8. M. Shahinpoor, Y. Bar-Cohen, J.O. Simpson, J. Smith, Smart Mater. Struct. 7, R15 (1998).

    Google Scholar 

  9. D. Dogruer, R. Tiwari, K.J. Kim, Proc. SPIE, 65241C (2007).

  10. R.F.D. Costa, J.Z. Ferreira, C. Deslouis, J. Mem. Sci. 215, 115 (2003).

    Google Scholar 

  11. K.J. Kim, M. Shahinpoor, Smart Mater. Struct. 12, 65 (2003).

    Google Scholar 

  12. L. Raymond, J.-F. Revol, D.H. Ryan, R.H. Marchessault, J. Appl. Polym. Sci. 59, 1073 (1996).

    Google Scholar 

  13. I.-S. Park, K.J. Kim, Sens. Actuators A, Phys. 135, 220 (2007).

    Google Scholar 

  14. M. Shahinpoor, K.J. Kim, Smart Mater. Struct. 9, 543 (2000).

    Google Scholar 

  15. S. Nemat-Nasser, J. Appl. Phys. 92 (5), 2899 (2002).

    Google Scholar 

  16. M.D. Bennett, D.J. Leo, Smart Mater. Struct. 12, 424 (2003).

    Google Scholar 

  17. M.D. Bennett, D.J. Leo, Sens. Actuators A, Phys. 115, 79 (2004).

    Google Scholar 

  18. I.-S. Park, S.-M. Kim, K.J. Kim, Smart Mater. Struct. 16, 1090 (2007).

    Google Scholar 

  19. N.P. Blake, M.K. Petersen, G.A. Voth, H. Metiu, J. Phys. Chem. B 109, 2422 (2005).

    Google Scholar 

  20. S. Nemat-Nasser, S. Zamani, J. Appl. Phys. 100, 064310 (2006).

    Google Scholar 

  21. S. Nemat-Nasser, S. Zamani, Y. Tor, J. Appl. Phys. 99, 104902 (2006).

    Google Scholar 

  22. S. Nemat-Nasser, Y. Wu, Smart Mater. Struct. 15, 909 (2006).

    Google Scholar 

  23. S. Nemat-Nasser, Y. Wu, J. Appl. Phys. 93, 5255 (2003).

    Google Scholar 

  24. D. Kim, PhD thesis (University of Nevada, Reno, 2006).

  25. D. Kim, K.J. Kim, Proc. SPIE, 65240A1 (2007).

  26. D. Kim, K.J. Kim, Y. Tak, D. Pugal, I.-S. Park, Appl. Phys. Lett. 90, 184104 (2007).

    Google Scholar 

  27. M. Shahinpoor, K. Kim, D. Leo, Polym. Compos. 24, 24 (2003).

    Google Scholar 

  28. K. Jung, J. Nam, H. Choi, Sens. Actuators A, Phys. 107, 183 (2003).

    Google Scholar 

  29. J. Wang, M. Taya, C. Xu, Y. Kuga, Proc. SPIE, 65241K1 (2007).

  30. J. Madden, N. Vandesteeg, P.A. Anquetil, P.G.A. Madden, A. Takshi, R.Z. Pytel, S.R. Lafontaine, P.A. Wieringa, I. Hunter, IEEE J. Oceanic Eng. 29, 706 (2004).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, IS., Jung, K., Kim, D. et al. Physical Principles of Ionic Polymer–Metal Composites as Electroactive Actuators and Sensors. MRS Bulletin 33, 190–195 (2008). https://doi.org/10.1557/mrs2008.44

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2008.44

Navigation