Skip to main content
Log in

Visualizing the Behavior of Dislocations—Seeing is Believing

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The spatial resolution of the transmission electron microscope makes it an ideal environment in which to continuously track the real-time response of a system to an external stimulus and to discover and quantify the rate-limiting fundamental microscopic processes and mechanisms governing the macroscopic properties. Advances in instrumentation, stage design, recording media, computational power, and image manipulation software are providing new opportunities for not only observing the microscopic mechanisms but also measuring concurrently the macroscopic response. In this article, the capability of this technique as applied to mechanical properties of materials is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.B. Hirsch, R.W. Horne, and M.J. Whelan, Phil. Mag. A 1, 677 (1956).

    Google Scholar 

  2. E.P. Butler, Reports Prog. Phys. 42, 833 (1979).

    Google Scholar 

  3. H.G.F. Wilsdorf, ASTM Spec. Tech. 245 43 (1958).

    Google Scholar 

  4. U. Messerschmidt and F. Appel, Ultramicroscopy 1, 223 (1976).

    Google Scholar 

  5. M.A. Haque and M T.A. Saif, J. Microelectromechanical Syst. 10,146 (2001).

    Google Scholar 

  6. Y. Zhu and H.D. Espinosa, Proc. Nat. Acad. Sci. 102,14503 (2005).

    Google Scholar 

  7. K. Hattar, J. Han, M.T.A. Saif, and I.M. Robertson, J. Mater. Res. 20, 1869 (2005).

    Google Scholar 

  8. M.A. Haque and M.T.A. Saif, Scripta Mater. 47, 863 (2002).

    Google Scholar 

  9. M.A. Haque and M.T.A. Saif, Proc. Nat. Acad. Sci. 101, 6335 (2004).

    Google Scholar 

  10. L. Rajagopalan, J.H. Han, and M.T.A. Saif, Science 315, 1831 (2007).

    Google Scholar 

  11. D. Golberg, P.M. F.J. Costa, O. Lourie, M. Mitome, X. Bai, K. Kurashima, C. Zhi, C. Tang, and Y. Bando, Nano Letters 7, 2146 (2007).

    Google Scholar 

  12. D. Golberg, X.D. Bai, M. Mitome, C.C. Tang, C.Y. Zhi, and Y. Bando, Acta Mater. 55, 1293 (2007).

    Google Scholar 

  13. T. Imura, High Voltage Electron Microscopy P.R. Swann, M.J. Goringe, and C.J. Humphreys, Eds., 179 (London, Academic, 1974).

    Google Scholar 

  14. H. Saka and T. Imura, J. Phys. Soc. Japan 32, 702 (1972).

    Google Scholar 

  15. M.H. Loretto. Observation and Characterisation of Dislocations. Dislocations and Properties of Real Materials 323 15 (London, The Institute of Metals, 1985).

    Google Scholar 

  16. T.C. Lee, I.M. Robertson, and H.K. Birnbaum, Acta Metall. et Mater. 40, 2569 (1992).

    Google Scholar 

  17. M. Benyoucef, A. Coujou, B. Barbker, and N. Clement, Mater. Sci. Eng. A 234–236,692 (1997).

    Google Scholar 

  18. S. Zghal, A. Coujou, and A. Couret, Diffusion and Defect Data Pt. B 59–60,165 (1998).

    Google Scholar 

  19. L.M. Hsiung, A.J. Schwartz, and T.G. Nieh, Scripta Mater. 36,1017 (1997).

    Google Scholar 

  20. D. Haeussler, U. Messerschmidt, M. Bartsch, F. Appel, and R. Wagner, Mater. Sci. & Engin. A 233, 15 (1997).

    Google Scholar 

  21. B. Baufeld, D. Baither, U. Messerschmidt, and M. Bartsch, Phys. Stat. Sol. (A) 150, 297 (1995).

    Google Scholar 

  22. J. Gemperlova, A. Jacques, A. Gemperle, and N. Zarubova. Interface Science 10, 51 (2002).

    Google Scholar 

  23. W.A.T. Clark, C.E. Wise, Z. Shen, and R.H. Wagoner, Ultramicroscopy 30, 76 (1989).

    Google Scholar 

  24. X. Baillin, J. Pelissier, A. Jacques, and A. George, Phil. Mag. A 61, 329 (1990).

    Google Scholar 

  25. F.K. LeGoues, M.C. Reuter, J. Tersoff, M. Hammar, and R.M. Tromp, Phys. Rev. Lett. 73, 300 (1994).

    Google Scholar 

  26. T.C. Lee, I.M. Robertson, and H.K. Birnbaum, Metall. Trans. A 21, 2437 (1990).

    Google Scholar 

  27. J. Shirokofff and I.M. Robertson, unpublished work.

  28. M. Jin, A.M. Minor, E.A. Stach, and J.W. Morris, Jr., Acta Mater. 52, 5381 (2004).

    Google Scholar 

  29. M. Jin, A.M. Minor, and J.W. Morris Jr., Thin Solid Films 515, 3202 (2007).

    Google Scholar 

  30. W.W. Gerberich, W.M. Mook, M.D. Chambers, M.J. Cordill, C.R. Perrey, C.B. Carter, R.E. Miller, W.A. Curtin, R. Mukherjee, and S.L. Girshick, Trans ASME. J. Appl. Mechs. 73, 327 (2006).

    Google Scholar 

  31. A.M. Minor, S.A.S. Asif, Z.W. Shan, E.A. Stach, E. Cyrankowski, T. Wyrobek, and O. Warren, Nature Mat. 5, 697 (2006).

    Google Scholar 

  32. J. Deneen, W.M. Mook, A. Minor, W.W. Gerberich, and C.B. Carter, J. Mater. Sci. 41, 4477 (2006).

    Google Scholar 

  33. J. Li, K.J.V. Vliet, T. Zhu, S. Yip, and S. Suresh, Nature Mat. 418, 307 (2002).

    Google Scholar 

  34. J.D. Nowak, W.M. Mook, A.M. Minor, W.W. Gerberich, and C.B. Carter, Phil. Mag. 87 29 (2007).

    Google Scholar 

  35. M.J. Cordill, M.D. Chambers, M.S. Lund, D.M. Hallman, C.R. Perrey, C.B. Carter, A. Bapat, U. Kortshagen, and W.W. Gerberich, Acta Mater. 54, 4515 (2006).

    Google Scholar 

  36. C.E. Carlton and P.J. Ferreira, MRS 2005 Fall Meeting, Boston, MA 903E, 0903 (2005).

    Google Scholar 

  37. G.E. Dieter, Mechanical Metallurgy (New York, McGraw-Hill, 1986).

    Google Scholar 

  38. Y. Xiang, D.J. Srolovitz, and L.T. Cheng, Acta Mater. 52, 1745 (2004).

    Google Scholar 

  39. Y. Xiang and D.J. Srolovitz, Phil. Mag. 86, 3937 (2006).

    Google Scholar 

  40. B.G. Clark, I.M. Robertson, L.M. Dougherty, D.C. Ahn, and P. Sofronis, J. Mater. Res. 20, 1792 (2005).

    Google Scholar 

  41. J. Rösler and E. Arzt, Acta Metall. et Mater. 38, 671 (1990).

    Google Scholar 

  42. E. Arzt, G. Dehm, P. Gumbsch, O. Kraft, and D. Weiss. Prog. Mater. Sci. 46, 283 (2001).

    Google Scholar 

  43. E.A. Marquis, D.N. Seidman, and D.C. Dunand, Acta Mater. 50, 4021 (2002).

    Google Scholar 

  44. D.N. Seidman, C.B. Fuller, J.L. Murray, Acta Mater. 53, 5401 (2005).

    Google Scholar 

  45. I.M. Robertson and D. Teter, Miscrosc. Res. Tech. 42, 260 (1998.).

    Google Scholar 

  46. I.M. Robertson, Enginr. Fract. Mech. 68, 671 (2001).

    Google Scholar 

  47. H.K. Birnbaum and P. Sofronis, Mater. Sci. Eng. A, Struct. Mater., Prop. Microstruct. Process. A176, 191 (1993).

    Google Scholar 

  48. J. Lufrano, P. Sofronis, and H.K. Birnbaum, J. Mech. Phys. Solids 44, 179 (1996).

    Google Scholar 

  49. P. Sofronis and I.M. Robertson, Phil. Mag. A 82, 3405 (2002).

    Google Scholar 

  50. Y. Liang, P. Sofronis, and N. Aravas, Acta Mater. 51, 2717 (2003).

    Google Scholar 

  51. J. Roberto and Tomas Diaz de la Rubia, http://www.sc.doe.gov/bes/reports/files/ANES_rpt.pdf.(2006) (accessed January 2008).

  52. B.D. Wirth, V.V. Bulatov, and T. De La Diaz Rubia, J. Engr. Mater. & Techn. 124, 329 (2002).

    Google Scholar 

  53. J.S. Robach, I.M. Robertson, B.D. Wirth, and A. Arsenlis, Phil. Mag. A 83, 955 (2003).

    Google Scholar 

  54. Y. Matsukawa, Y.N. Osetsky, R.E. Stoller, and S.J. Zinkle, JOM 56, 347 (2004).

    Google Scholar 

  55. I.M. Robertson, A. Beaudoin, K. Al-Fadhalah, L. Chun-Ming, J. Robach, B.D. Wirth, A. Arsenlis, D. Ahn, and P. Sofronis. Mater. Sci. & Engin. A 400–401, 245 (2005).

    Google Scholar 

  56. Y. Matsukawa, Y.N. Osetsky, R.E. Stoller, and S.J. Zinkle, J. Nucl.Mater. 351, 285 (2006).

    Google Scholar 

  57. J.S. Robach, I.M. Robertson, H.J. Lee, B.D. Wirth, Acta Mater. 54, 1679 (2006).

    Google Scholar 

  58. N.M. Ghoniem, S.H. Tong, J. Huang, B.N. Singh, and M. Wen, J. Nucl.Mater. 307–311, 843 (2002).

    Google Scholar 

  59. B.N. Singh, A.J.E. Foreman, and H. Trinkaus, J. Nucl.Mater. 249, 103 (1997).

    Google Scholar 

  60. L.Z. Sun, Ghoniem N.M., S.H. Tong, and B.N. Singh, J. Nucl.Mater. 283–287 pt.B, 741 (2000).

    Google Scholar 

  61. A. Arsenlis, B.D. Wirth, M. Rhee, Phil. Mag. 84, 3617 (2004).

    Google Scholar 

  62. F.M. Ross, R. Hull, D. Bahnck, J.C. Bean, L. J. Peticolas, and C.A. King, Appl. Phys. Lett. 62 1426 (1993).

    Google Scholar 

  63. J.C. Bean, L.C. Feldman, A.T. Fiory, S. Nakahara, I.K. Robinson, GexSi1-x/Si Strained-Layer Superlattice Grown by Molecular Beam Epitaxy 2 436 (Boston, MA, USA, 1984).

    Google Scholar 

  64. R. Hull, J.C. Bean, D.J. Werder, and R.E. Leibenguth. Phys. Rev. B 40, 1681 (1989)

    Google Scholar 

  65. R. Hull, and J.C. Bean. J. Vac. Sci. & Tech A 7, 2580 (1989).

    Google Scholar 

  66. R. Hull, J.C. Bean, and C. Buescher, J. Appl. Phys. 66, 837 (1989).

    Google Scholar 

  67. W.A. Nix, D.B. Noble, J.F. Turlo, Proc. Mat. Res. Soc. 188, 315 (1990).

    Google Scholar 

  68. M. Imai and K. Sumino, Phil. Mag. A47, 599. (1983).

    Google Scholar 

  69. B.W. Dodson and J.Y. Tsao, Appl. Phys. Lett. 51, 1325 (1987).

    Google Scholar 

  70. R. Hull, J.C. Bean, L. Peticolas, D. Bahnck, and F. Unterwald, J. Appl. Phys. 70, 2052 (1990).

    Google Scholar 

  71. R. Hull and J.C. Bean, Phys. Stat. Sol. (A) 138, 533 (1993).

    Google Scholar 

  72. F. Louchet, Y. Brechet, J. Pelissier, and D.C. Muchy, Phil. Mag. A 57, 327 (1988).

    Google Scholar 

  73. M. Inoue, K. Suzuki, H. Amasuga, Y. Mera, and K. Maeda, J. Appl. Phys. 83, 1953 (1998).

    Google Scholar 

  74. H.R. Kolar, J.C.H. Spence, H. Alexander, Phys. Rev. Lett. 77, 4031 (1996).

    Google Scholar 

  75. E. Orowan. Proc. Phys. Soc. 52, 8 (1940).

    Google Scholar 

  76. D.C. Houghton, J. Appl. Phys. 70, 2136 (1991).

    Google Scholar 

  77. D.D. Perovic and D.C. Houghton, Proc. Mat. Res Soc. 263, 391 (1992).

    Google Scholar 

  78. E.A. Stach, K.W. Schwarz, R. Hull, F.M. Ross, and R.M. Tromp, Phys. Rev. Lett. 84, 947 (2000).

    Google Scholar 

  79. R. Hull and J.C. Bean. Appl. Phys. Lett. 54, 925 (1989).

    Google Scholar 

  80. L.B. Freund, J. Appl. Phys. 68,2073 (1990).

    Google Scholar 

  81. K.W. Schwarz, Phys. Rev. Lett. 78, 4785 (1997).

    Google Scholar 

  82. T.J. Gosling, S.C. Jain, J.R. Willis, A. Atkinson, and R. Bullough, Phil. Mag. A66, 119 (1992).

    Google Scholar 

  83. W.D. Nix, Metall. Trans. A 20, 2217 (1989).

    Google Scholar 

  84. E. Arzt, Acta Mater. 46, 5611 (1998).

    Google Scholar 

  85. S.P. Baker, Mater. Sci. & Engin. A 319–321, 16 (2001).

    Google Scholar 

  86. P. Wellner, O. Kraft, G. Dehm, J. Andersons, and E. Arzt, Acta Mater. 52, 2325 (2004)

    Google Scholar 

  87. Y. Choi and S. Suresh, Acta Mater. 50, 1881 (2002).

    Google Scholar 

  88. K.S. Kumar, S. Suresh, M.F. Chisholm, J.A. Horton, and P. Wang, Acta Mater. 51, 387 (2003).

    Google Scholar 

  89. E. Eiper, J. Keckes, K.J. Martinschitz, I. Zizak, M. Cabie, and G. Dehm, Acta Mater. 55, 1941 (2007).

    Google Scholar 

  90. R. Venkatraman, J.C. Bravman, W.D. Nix, P.W. Davies, P.A. Flinn, and D.B. Fraser, J. Electron. Mater. 19, 1231 (1990).

    Google Scholar 

  91. O. Kraft, M. Hommel, and E. Arzt, Mater. Sci. Eng. A A288, 209 (2000).

    Google Scholar 

  92. G. Dehm, T.J. Balk, H. Edongue, and E. Arzt, Microelectronic Engineering 70, 412 (2003).

    Google Scholar 

  93. G. Dehm, T. Wagner, T.J. Balk, E. Arzt, and B.J. Inkson, J. Mater Sci. and Tech. 18, 113 (2002).

    Google Scholar 

  94. B.J. Inkson, G. Dehm, and T. Wagner, Acta Mater. 50, 5033 (2002).

    Google Scholar 

  95. G. Dehm and E. Arzt, Appl. Phys. Lett. 77, 1126 (2000).

    Google Scholar 

  96. M. Legros, G. Dehm, T.J. Balk, E. Arzt, O. Bostrom, P. Gergaud, O. Thomas, and B. Kaouache, Plasticity-Related Phenomena in Metallic Films on Substrates 63 (San Francisco, CA, Mater. Res. Soc, 2003).

  97. G. Dehm, C. Motz, C. Scheu, H. Clemens, P.H. Mayrhofer, and C. Mitterer. Advanced Engineering Materials 8,1033 (2006).

    Google Scholar 

  98. K. Deok-kee, W.D. Nix, R.P. Vinci, M.D. Deal, and J.D. Plummer, J. Appl. Phys. 90, 781 (2001).

    Google Scholar 

  99. H. Gao, L. Zhang, W.D. Nix, C.V. Thompson, and E. Arzt, Acta Mater. 47, 2865 (1999).

    Google Scholar 

  100. T.J. Balk, G. Dehm, and E. Arzt, Parallel Glide: A Fundamentally Different Type of Dislocation Motion in Ultrathin Metal Films 779 87 (San Francisco, CA, Materials Research Society, 2003).

    Google Scholar 

  101. G. Dehm, M. Legros, and B. Heiland. J. Mater. Sci. 41, 4484 (2006).

    Google Scholar 

  102. S.H. Oh, M. Legros, D. Kiener, P. Gruber, and G. Dehm, Acta Mater. 55, 5558 (2007).

    Google Scholar 

  103. T.J. Balk, G. Dehm, and E. Arzt, Acta Mater. 51, 4471 (2003).

    Google Scholar 

  104. M. Chen, E. Ma, K.J. Hemker, H. Sheng, Y. Wang, and X. Cheng. Science 300, 1275 (2003).

    Google Scholar 

  105. K. Hattar, J.H. Han, D.M. Follstaedt, S.J. Hearne, T.A. Saif, and I.M. Robertson, Length Scale Effects on Deformation and Failure Mechanisms of Ultra-Fine Grained Aluminum 907, 1 (Boston, MA, Materials Research Society, 2005).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robertson, I.M., Ferreira, P.J., Dehm, G. et al. Visualizing the Behavior of Dislocations—Seeing is Believing. MRS Bulletin 33, 122–131 (2008). https://doi.org/10.1557/mrs2008.25

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2008.25

Navigation