Skip to main content
Log in

ZnO-Based Semiconductors as Building Blocks for Active Devices

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

This article provides a review of materials and devices of wide-bandgap oxide semiconductors based on ZnO, highlighting the nature of the chemical bond. The electronic structures of these materials are very different from those of conventional covalently bonded semiconductors, owing to the ionic nature of the chemical bonds. Therefore, one needs to design and optimize fabrication processes and structures of active devices containing such materials, taking into account the peculiar defect formation mechanisms. A variety of active devices that have clear advantages over the conventional ones have been demonstrated, for example, ultraviolet light-emitting diodes, quantum Hall devices, and transparent and flexible thin-film transistors with high electron mobility, paving the way for future applications. The reasons behind the successes identify future challenges in research on oxide semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Kawasaki, T. Makino, Eds., Semicond. Sci. Technol. 20 (4) (2005).

  2. D. Look, Mat. Sci. Eng. B 80, 383 (2001).

    Google Scholar 

  3. Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Došan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys., 98, 041301 (2005).

    Google Scholar 

  4. C. Klingshirn, Phys. Stat. Sol. B 244, 3027 (2007).

    Google Scholar 

  5. A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S.F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki, Nat. Mater. 4, 42 (2005).

    Google Scholar 

  6. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Nature 432, 488 (2004).

    Google Scholar 

  7. Z.K. Tang, G.K.L. Wang, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinamu, Y. Segawa, Solid State Commun. 103, 459 (1997).

    Google Scholar 

  8. Z.K. Tang, G.K.L. Wang, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinamu, Y. Segawa, Appl. Phys. Lett. 72, 3270 (1998).

    Google Scholar 

  9. J. Nishii, F.M. Hossain, T. Aita, Y. Ohmaki, S. Kishimoto, T. Fukumura, Y. Ohno, H. Ohno, S. Takagi, K. Saikusa, I. Ohkubo, A. Ohtomo, F. Matsukura, H. Koinuma, M. Kawasaki, Jpn. J. Appl. Phys. 42, L347 (2003).

    Google Scholar 

  10. E.M.C. Fortunato, Adv. Mater. 17, 590 (2005).

    Google Scholar 

  11. A. Tsukazaki, A. Ohtomo, M. Kawasaki, Appl. Phys. Lett. 88, 152106 (2006).

    Google Scholar 

  12. A. Tsukazaki, M. Kubota, A. Ohtomo, T. Onuma, K. Ohtani, H. Ohno, S.F. Chichibu, M. Kawasaki, Jpn. J. Appl. Phys. 44, L643 (2005).

    Google Scholar 

  13. K. Maeda, M. Sato, I. Niikura, T. Fukuda, Semicond. Sci. Technol. 20, S49 (2005).

    Google Scholar 

  14. S.F. Chichibu, A. Uedono, T. Onuma, B.A. Haskell, A. Chakraborty, T. Koyama, P.T. Fini, S. Keller, S.P. Denbaas, J.S. Speck, U.K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaka, J. Han, T. Sota, Nat. Mater. 5, 810 (2006).

    Google Scholar 

  15. H.-H. Hsieh, T. Kamiya, K. Nomura, H. Hosono, C.-C. Wu, Appl. Phys. Lett. 92, 133503 (2008).

    Google Scholar 

  16. M. Kimura, T. Nakanishi, K. Nomura, T. Kamiya, H. Hosono, Appl. Phys. Lett. 92, 133512 (2008).

    Google Scholar 

  17. F. Hossain, J. Nishii, S. Takagi, A. Ohtomo, T. Fukumura, H. Fujioka, H. Ohno, H. Koinuma, M. Kawasaki, J. Appl. Phys. 94, 7768 (2003).

    Google Scholar 

  18. T. Kamiya, H. Hosono, Int. J. Appl. Ceram. Technol. 2, 285 (2005).

    Google Scholar 

  19. A. Tsukazaki, A. Ohtomo, T. Kita, Y. Ohno, H. Ohno, M. Kawasaki, Science 315, 1388 (2007).

    Google Scholar 

  20. A. Tsukazaki, H. Yuji, S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, H. Takasu, A. Ohtomo, M. Kawasaki, Appl. Phys. Express 1, 055004 (2008).

    Google Scholar 

  21. H. Hosono, J. Non-Cryst. Solids 203, 334 (1996).

    Google Scholar 

  22. S.M. Sze, Physics of Semiconductor Devices (Wiley InterScience, New York, 1981).

    Google Scholar 

  23. H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, H. Hosono, Nature 389, 939 (1997).

    Google Scholar 

  24. H. Hiramatsu, K. Ueda, H. Ohta, M. Hirano, M. Kikuchi, H. Yanagi, T. Kamiya, H. Hosono, Appl. Phys. Lett. 91, 012104 (2007).

    Google Scholar 

  25. H. Mizoguchi, M. Hirano, S. Fujitsu, T. Takeuchi, K. Ueda, H. Hosono, Appl. Phys. Lett. 80, 1207 (2002).

    Google Scholar 

  26. T. Kamiya, S. Narushima, H. Mizoguchi, K. Shimizu, K. Ueda, H. Ohta, M. Hirano, H. Hosono, Adv. Funct. Mater. 15, 968 (2005).

    Google Scholar 

  27. C. Persson, A. Zunger, Phys. Rev. B 68, 073205 (2003).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamiya, T., Kawasaki, M. ZnO-Based Semiconductors as Building Blocks for Active Devices. MRS Bulletin 33, 1061–1066 (2008). https://doi.org/10.1557/mrs2008.226

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2008.226

Navigation