Skip to main content
Log in

Directed Growth of Branched Nanowire Structures

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

We describe the production of hierarchical branched nanowire structures by the sequential seeding of multiple wire generations with metal nanoparticles. Such complex structures represent the next step in the study of functional nanowires, as they increase the potential functionality of nanostructures produced in a self-assembled way. It is possible, for example, to fabricate a variety of active heterostructure segments with different compositions and diameters within a single connected structure. The focus of this work is on epitaxial III-V semiconductor branched nanowire structures, with the two materials GaP and In As used as typical examples of branched structures with cubic (zinc blende) and hexagonal (wurtzite) crystal structures. The general morphology of these structures will be described, as well as the relationship between morphology and crystal structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Manna, E.C. Scher, and A.P. Alivisatos, J. Am. Chem. Soc. 122 (2002) p. 12700.

    Google Scholar 

  2. J.W. Grebinski, K.L. Hull, J. Zhang, T.H. Kosel, and M. Kuno, Chem. Mater. 16 (2004) p. 5260.

    Google Scholar 

  3. K.L. Hull, J.W. Grebinski, T.H. Kosel, and M. Kuno, Chem. Mater. 17 (2005) p. 4416.

    Google Scholar 

  4. Y.W. Jun, S.M. Lee, N.J. Kang, and J. Cheon, J. Am. Chem. Soc. 123 (2001) p. 5150.

    Google Scholar 

  5. Y.W. Jun, Y.Y. Jung, and J. Cheon, J. Am. Chem. Soc. 124 (2002) p. 615.

    Google Scholar 

  6. L. Manna, D.J. Milliron, A. Meisel, E.C. Scher, and A.P. Alivisatos, Nat. Mater. 2 (2003) p. 382.

    Google Scholar 

  7. Y. Cheng, Y. Wang, D. Chen, and F. Bao, J. Phys. Chem. B 109 (2005) p. 794.

    Google Scholar 

  8. Y.L. Lao, J.G. Wen, and Z.F. Ren, Nano Lett. 2 (2002) p. 1287.

    Google Scholar 

  9. H. Yan, R. He, J. Pham, and P. Yang, Adv. Mater. 15 (2003) p. 402.

    Google Scholar 

  10. S.Y. Bae, H.W. Seo, H.C. Choi, J. Park, and J. Park, J. Phys. Chem. B 108 (2004) p. 12318.

    Google Scholar 

  11. T. Zhang, W. Dong, M. Keeter - Brewer, S. Konar, R.N. Njabon, and Z.R. Tian, J. Am. Chem. Soc. 128 (2006) p. 10960.

    Google Scholar 

  12. Y.H. Leung, A.B. Djurisic, J. Gao, M.H. Xie, and W.K. Chan, Chem. Phys. Lett. 385 (2004) p. 155.

    Google Scholar 

  13. Y.Q. Zhu, N. Grobert, H. Terrones, J.P. Hare, H.W. Kroto, W.K. Hsu, M. Terrones, and D.R.M. Walton, J. Mater. Chem. 8 (1998) p. 1859.

    Google Scholar 

  14. J. Zhou, Y. Ding, S.Z. Deng, L. Gong, N.S. Xu, and Z.L. Wang, Adv. Mater. 14 (2005) p. 2107.

    Google Scholar 

  15. P.X. Gao and Z.L. Wang, Appl. Phys. Lett. 84 (2004) p. 2883.

    Google Scholar 

  16. P.X. Gao, Y. Ding, and Z.L. Wang, Nano Lett. 3 (2003) p. 1315.

    Google Scholar 

  17. Z.L. Wang and Z.W. Pan, Adv. Mater. 14 (2002) p. 1029.

    Google Scholar 

  18. J. Hu, Y. Bando, J. Zhan, X. Yuan, T. Sekiguchi, and D. Golberg, Adv. Mater. 17 (2005) p. 971.

    Google Scholar 

  19. Y.Q. Zhu, W.K. Hsu, W.Z. Zhou, M. Terrones, H.W. Kroto, and D.R.M. Walton, Chem. Phys. Lett. 347 (2001) p. 334.

    Google Scholar 

  20. Q. Wan, M. Wei, D. Zhi, J.L. MacManus-Driscoll, and M.G. Blamire, Adv. Mater. 18 (2006) p. 234.

    Google Scholar 

  21. J. Zhang, Y. Yang, F. Jiang, J. Li, B. Xu, S. Wang, and X. Wang, J. Cryst. Growth 293 (2006) p. 236.

    Google Scholar 

  22. K.A. Dick, K. Deppert, M.W. Larsson, T. Mårtensson, W. Seifert, L.R. Wallenberg, and L. Samuelson, Nat. Mater. 3 (2004) p. 380.

    Google Scholar 

  23. K.A. Dick, K. Deppert, T. Mårtensson, W. Seifert, and L. Samuelson, J. Cryst. Growth 272 (2004) p. 131.

    Google Scholar 

  24. K.A. Dick, K. Deppert, L.S. Karlsson, L.R. Wallenberg, L. Samuelson, and W. Seifert, Adv. Funct. Mater. 15 (2005) p. 1603.

    Google Scholar 

  25. K.A. Dick, Zs. Geretovszky, A. Mikkelsen, L.S. Karlsson, E. Lundgren, J.-O. Malm, J.N. Andersen, L. Samuelson, W. Seifert, B.A. Wacaser, and K. Deppert, Nanotechnology 17 (2006) p. 1344.

    Google Scholar 

  26. S.J. May, J.-G. Zheng, B.W. Wessels, and L.J. Lauhon, Adv. Mater. 17 (2005) p. 598.

    Google Scholar 

  27. J. Su, G. Cui, M. Gherasimova, H. Tsukamoto, J. Han, D. Ciuparu, S. Lim, L. Pfefferle, Y. He, A.V. Nurmikko, C. Broadbridge, and A. Lehman, Appl. Phys. Lett. 86 (2005) p. 13105.

    Google Scholar 

  28. Z.-H. Lan, C.-H. Liang, C.-W. Hsu, C.-T. Wu, H.-M. Lin, S. Dhara, K.-H. Chen, L.-C. Chen, and C.-C. Chen, Adv. Funct. Mater. 14 (2004) p. 233.

    Google Scholar 

  29. D. Wang, F. Qian, C. Yang, Z. Zhong, and C.M. Lieber, Nano Lett. 4 (2004) p. 871.

    Google Scholar 

  30. Z.H. Wu, X. Mei, D. Kim, M. Blumin, and H.E. Ruda, Appl. Phys. Lett. 83 (2003) p. 3368.

    Google Scholar 

  31. S.H. Yun, J.Z. Wu, A. Dibos, X.D. Zou, and U.O. Karlsson, Nano Lett. 6 (2006) p. 385.

    Google Scholar 

  32. R.S. Wagner and W.C. Ellis, Appl. Phys. Lett. 4 (1964) p. 89.

    Google Scholar 

  33. A.I. Persson, M.W. Larsson, S. Stenström, B.J. Ohlsson, L. Samuelson, and L.R. Wallenberg, Nat. Mater. 3 (2004) p. 677.

    Google Scholar 

  34. K.A. Dick, K. Deppert, T. Mårtensson, B. Mandl, L. Samuelson, and W. Seifert, Nano Lett. 5 (2005) p. 761.

    Google Scholar 

  35. A.F.W. Willoughby, Rep. Prog. Phys. 41 (1978) p. 1665.

    Google Scholar 

  36. T. Mårtensson, C.P.T. Svensson, B.A. Wacaser, M.W. Larsson, W. Seifert, K. Deppert, A. Gustafsson, L.R. Wallenberg, and L. Samuelson, Nano Lett. 4 (2004) p. 1987.

    Google Scholar 

  37. A.G. Milnes and A.Y. Polyakov, Mater. Sci. Eng. B 18 (1993) p. 237.

    Google Scholar 

  38. S.Q. Wang and H.Q. Ye, J. Phys. Condens. Mater. 14 (2002) p. 9579.

    Google Scholar 

  39. P.I. Gaiduk, F.F. Komarov, V.S. Tishkov, W. Wesch, and E. Wendler, Phys. Rev. B 61 (2000) p. 15785.

    Google Scholar 

  40. V. Narayanan, S. Mahajan, N. Sukidi, K.J. Bachmann, V. Woods, and N. Dietz, Phil. Mag. A 80 (2000) p. 555.

    Google Scholar 

  41. S.B. Qadri, E.F. Skelton, D. Hsu, A.D. Dinsmore, J. Yang, H.F. Gray, and B.R. Ratna, Phys. Rev. B 60 (1999) p. 9191.

    Google Scholar 

  42. K. Takahashi and T. Moriizumi, Jpn. J. Appl. Phys. 5 (1966) p. 657.

    Google Scholar 

  43. M.H. Magnusson, K. Deppert, J.-O. Malm, J.-O. Bovin, and L. Samuelson, J. Nanopart. Res. 1 (1999) p. 243.

    Google Scholar 

  44. H.G. Scheibel and J. Porstendörfer, J. Aerosol Sci. 14 (1983) p. 113.

    Google Scholar 

  45. E.O. Knutson and K.T. Whitby, J. Aerosol Sci. 6 (1975) p. 443.

    Google Scholar 

  46. M.N.A. Karlsson, K. De ppert, L.S. Karlsson, M.H. Magnusson, J.-O. Malm, and N.S. Srinivasan, J. Nanoparticle Res. 7 (2005) p. 43.

    Google Scholar 

  47. K. Deppert, F. Schmidt, T. Krinke, J. Dixkens, and H. Fissan, J. Aerosol Sci. 27 (1996) p. S151.

    Google Scholar 

  48. W. Seifert, M. Borgström, K. Deppert, K.A. Dick, J. Johansson, M.W. Larsson, T. Mårtensson, N. Sköld, C.P.T. Svensson, B.A. Wacaser, L.R. Wallenberg, and L. Samuelson, J. Cryst. Growth 272 (2004) p. 211.

    Google Scholar 

  49. J. Johansson, C.P.T. Svensson, T. Mårtensson, L. Samuelson, and W. Seifert, J. Phys. Chem. B 109 (2005) p. 13567.

    Google Scholar 

  50. J. Johansson, L.S. Karlsson, C.P.T. Svensson, T. Mårtensson, B.A. Wacaser, K. Deppert, L. Samuelson, and W. Seifert, Nat. Mater. 5 (2006) p. 574.

    Google Scholar 

  51. L.S. Karlsson, M.W. Larsson, J.-O. Malm, L.R. Wallenberg, K.A. Dick, K. Deppert, W. Seifert, and L. Samuelson, NANO 1 (2006) p. 139.

    Google Scholar 

  52. K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, and M. Koguchi, Appl. Phys. Rev. 77 (1995) p. 447.

    Google Scholar 

  53. C.T. Tsai and R.S. Williams, J. Mater. Res. 1 (1986) p. 352.

    Google Scholar 

  54. R. Veresegyhazy, I. Mojzes, and B. Pecz, Vacuum 36 (1986) p. 547.

    Google Scholar 

  55. R. Veresegyhazy, B. Pecz, and I. Mojzes, Physica Status Solidi 94 (1986) p. K11.

    Google Scholar 

  56. S.E.R. Hiscocks and W. Hume-Rothery Proc. R. Soc. (London) 282 (1964) p. 318.

    Google Scholar 

  57. L.E. Jensen, M.T. Björk, S. Jeppesen, A.I. Persson, B.J. Ohlsson, and L. Samuelson, Nano Lett. 4 (2004) p. 1961.

    Google Scholar 

  58. J. Johansson, B.A. Wacaser, K.A. Dick, and W. Seifert, Nanotechnology 17 (2006) p. S355.

    Google Scholar 

  59. M. Koguchi, H. Kakibayashi, M. Yazawa, K. Jiruma, and T. Katsuyama, Jpn. J. Appl. Phys. 31 (1992) p. 2061.

    Google Scholar 

  60. K.A. Dick, K. Deppert, L.S. Karlsson, W. Seifert, L.R. Wallenberg, and L. Samuelson, Nano Lett. 6 (2006) p. 2842.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dick, K.A., Deppert, K., Karlsson, L.S. et al. Directed Growth of Branched Nanowire Structures. MRS Bulletin 32, 127–133 (2007). https://doi.org/10.1557/mrs2007.45

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2007.45

Navigation