Skip to main content
Log in

Epitaxial Growth of III-V Nanowires on Group IV Substrates

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Semiconducting nanowires are emerging as a route to combine heavily mismatched materials. The high level of control on wire dimensions and chemical composition makes them promising materials to be integrated in future silicon technologies as well as to be the active element in optoelectronic devices.

This ar ticle reviews the recent progress in epitaxial growth of nanowires on non-corresponding substrates. We highlight the advantage of using small dimensions to facilitate accommodation of the lattice strain at the surface of the structures. More specifically, we will focus on the growth of III-V nanowires on Group IV substrates. This approach enables the integration of high-perform ance III-V semiconductors monolithically into mature silicon technology, since fundamental issues of III-V integration on Si such as lattice and thermal expansion mismatch can be overcome. Moreover, as there will only be one nucleation site per crystallite, the system will not suffer from antiphase boundaries.

Issues that affect the electronic properties of the heterojunction, such as the crystallographic quality and diffusion of elements across the heterointerface, will be discussed. Finally, we address potential applications of vertical III-V nanowires grown on silicon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.S. Wagner and W.C. Ellis, Appl. Phys. Lett. 4 (1964) p. 89.

    Google Scholar 

  2. K. Hiruma, H. Murakoshi, M. Yazawa, and T. Katsuyama, J. Cryst. Growth 163 (1996) p. 226.

    Google Scholar 

  3. M.T. Björk, B.J. Ohlsson, T. Sass, A.I. Persson, C. Thelander, M.H. Magnusson, K. Deppert, L.R. Wallenberg, and L. Samuelson, Appl. Phys. Lett. 80 (2002) p. 1058.

    Google Scholar 

  4. Y. Wu, R. Fan, and P. Yang, Nano Lett. 2 (2002) p. 83.

    Google Scholar 

  5. M.S. Gudiksen, L.J. Lauhon, J. Wang, D.C. Smith, and C.M. Lieber, Nature 415 (2002) p. 617.

    Google Scholar 

  6. M.A. Verheijen, G. Immink, T. deSmet, M.T. Borgström, and E.P.A.M. Bakkers, J. Am. Chem. Soc. 128 (2006) p. 1353.

    Google Scholar 

  7. L.J. Lauhon, M.S. Gudiksen, D. Wang, and C.M. Lieber, Nature 420 (2002) p. 57.

    Google Scholar 

  8. J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H.-J. Choi, and P. Yang, Nature 422 (2003) p. 599.

    Google Scholar 

  9. J. Hu, Y. Bando, Z. Liu, T. Sekiguchi, D. Goldberg, and J. Zhan, J. Am. Chem. Soc. 125 (2003) p. 11306.

    Google Scholar 

  10. O. Hayden, A.B. Greytak, and D.C. Bell, Adv. Mater. 17 (2005) p. 701.

    Google Scholar 

  11. F. Qian, S. Gradecak, Y. Li, C.-Y. Wen, and C.M. Lieber, Nano Lett. 5 (2005) p. 2287.

    Google Scholar 

  12. E. Ertekin, P.A. Greaney, T.D. Sands, and D.C. Chrzan, in Mater. Res. Soc. Symp. Proc. 737 (2003) F10.4.1–6.

    Google Scholar 

  13. M. Zervos and L.F. Feiner, J. Appl. Phys. 95 (2004) p. 281.

    Google Scholar 

  14. R.S. Wagner, in Whisker Technology, edited by A.B. Levitt (Wiley Interscience, New York, 1970) p. 47.

    Google Scholar 

  15. E.I. Givargizov, J. Cryst. Growth 20 (1973) p. 217.

    Google Scholar 

  16. E.I. Givargizov, J. Cryst. Growth 31 (1975) p. 20.

    Google Scholar 

  17. E.I. Givargizov, J. Vac. Sci. Technol. B 11 (1993) p. 449.

    Google Scholar 

  18. M. Yazawa, M. Koguchi, and K. Hiruma, Appl. Phys. Lett. 58 (1991) p. 1080.

    Google Scholar 

  19. K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, M. Koguchi, and H. Kakibayashi, J. Appl. Phys. 77 (1995) p. 447.

    Google Scholar 

  20. T.I. Kamins, X. Li, R.S. Williams, and X. Liu, Nano Lett. 4 (2004) p. 503.

    Google Scholar 

  21. J.W. Dailey, J. Taraci, T. Clement, D.J. Smith, J. Drucker, and S.T. Picraux, J. Appl. Phys. 96

    Google Scholar 

  22. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292 (2001) p. 1897.

    Google Scholar 

  23. Z. Zhong, F. Qian, D. Wang, and C.M. Lieber, Nano Lett. 3 (2003) p. 343.

    Google Scholar 

  24. T. Kuykendall, P.J. Pauzauski, Y. Zhang, J. Goldberger, D. Sirbuly, J. Denlinger, and P. Yang, Nature Mater. 3 (2004) p. 524.

    Google Scholar 

  25. Y.F. Chan, X.F. Duan, S.K. Chan, I.K. Sou, X.X. Zhang, and N. Wang, Appl. Phys. Lett. 83 (2003) p. 2665.

    Google Scholar 

  26. T. Mårtensson, C.P.T. Svensson, B.A. Wacaser, M.W. Larsson, W. Seifert, K. Deppert, A. Gustafsson, L.R. Wallenberg, and L. Samuelson, Nano Lett. 4 (2004) p. 1987.

    Google Scholar 

  27. A.L. Roest, M.A. Verheijen, O. Wunnicke, S. Serafin, H. Wondergem, and E.P.A.M. Bakkers, Nanotechnology 17 (2006) p. S271.

    Google Scholar 

  28. M.A. Verheijen, E.P.A.M. Bakkers, A.R. Balkenende, A.L. Roest, M.M.H. Wagemans, M. Kaiser, H.J. Wondergem, and P.C.J. Graat, in Proc. MSM XIV: Microscopy of Semiconducting Materials, Springer Proc. Physics, Vol. 107, edited by A.G. Cullis and J.L. Hutchison (2005) p. 295.

  29. E.P.A.M. Bakkers, J.A. Van Dam, S. De Franceschi, L.P. Kouwenhoven, M. Kaiser, M. Verheijen, H. Wondergem, and P. Van der Sluis, Nature Mater. 3 (2004) p. 769.

    Google Scholar 

  30. G.A. Bootsma and H. Gassen, J. Cryst. Growth 10 (1971) p. 223.

    Google Scholar 

  31. L. Schubert, P. Werner, N.D. Zakharov, G. Gerth, F.M. Kolb, L. Long, U. Gösele, and T.Y. Tan, Appl. Phys. Lett. 84 (2004) p. 4968.

    Google Scholar 

  32. R. Calarco, M. Marso, T. Richter, A.I. Aykanat, R. Meijers, A.V.D. Hart, T. Stoica, and H. Lüth, Nano Lett. 5 (2005) p. 981.

    Google Scholar 

  33. Y. Ohno, T. Shirahama, S. Takeda, A. Ishizumi, and Y. Kanemitsu, Appl. Phys. Lett. 87 (2005) p. 43105.

    Google Scholar 

  34. M.C. Plante and R.R. LaPierre, J. Cryst. Growth 286 (2006) p. 394.

    Google Scholar 

  35. M.T. Bjork, B.J. Ohlsson, T. Sass, A.I. Persson, C. Thelander, M.H. Magnusson, K. Deppert, L.R. Wallenberg, and L. Samuelson, Appl. Phys. Lett. 80 (2002) p. 1058.

    Google Scholar 

  36. A.M. Morales and C.M. Lieber, Science 279 (1998) p. 208.

    Google Scholar 

  37. Y.F. Zhang, Y.H. Tang, N. Wang, D.P. Yu, C.S. Lee, I. Bello, and S.T. Lee, Appl. Phys. Lett. 72 (1998) p. 1835.

    Google Scholar 

  38. X. Duan and C.M. Lieber, Adv. Mater. 12 (2000) p. 298.

    Google Scholar 

  39. E.P.A.M. Bakkers and M.A. Verheijen, J. Am. Chem. Soc. 125 (2003) p. 3440.

    Google Scholar 

  40. D.D.D. Ma, C.S. Lee, F.C.K. Au, S.Y. Tong, and S.T. Lee, Science 299 (2003) p. 1874.

    Google Scholar 

  41. T.I. Kamins, R.S. Williams, D.P. Basile, T. Hesjedal, and J.S. Harris, J. Appl. Phys. 89 (2001) p. 1008.

    Google Scholar 

  42. A. Hiraki, E. Lugujjo, and J.W. Mayer, J. Appl. Phys. 43 (1972) p. 3643.

    Google Scholar 

  43. A.M. Cassell, N.R. Franklin, T.W. Tombler, E.M. Chan, J. Han, and H. Dai, J. Am. Chem. Soc. 121 (1999) p. 7975.

    Google Scholar 

  44. S. Huang, X. Cai, and J. Liu, J. Am. Chem. Soc. 125 (2003) p. 5636.

    Google Scholar 

  45. L. Gangloff, E. Minoux, K.B.K. Teo, P. Vincent, V. Semet, V.T. Binh, M.H. Yang, I.Y.Y. Bu, R.G. Lacerda, G. Pirio, J.P. Schnell, D. Pribat, D.G. Hasko, G.A.J. Amaratunga, W.I. Milne, and P. Legagneux, Nano Lett. 4 (2004) p. 1575.

    Google Scholar 

  46. U. Krishnamachari, M.T. Borgström, B.J. Ohlsson, N. Panev, L. Samuelson, W. Seifert, M.W. Larsson, and L.R. Wallenberg, Appl. Phys. Lett. 85 (2004) p. 2077.

    Google Scholar 

  47. Z. Ikonic, G.P. Srivastava, and J.C. Inkson, Phys. Rev. B. 52 (1995) p. 14078.

    Google Scholar 

  48. J.H. Westbrook, ed., Moffatt’s Handbook of Binary Phase Diagrams (Genium Group, New York, 2004).

    Google Scholar 

  49. D.R. Lide, ed., Handbook of Chemistry and Physics (CRC Press, Boca Raton, Fla., 1995).

    Google Scholar 

  50. W. Scott and R.J. Hager, J. Electron. Mater. 8 (1979) p. 581.

    Google Scholar 

  51. S.F. Fang, K. Adomi, S. Iyer, H. Morkoc, H. Zabel, C. Choi, and N. Otsuka, J. Appl. Phys. 68 (1990) p. R31.

    Google Scholar 

  52. O. Hayden, R. Agarwal, and C.M. Lieber, Nature Mater. 5 (2006) p. 352.

    Google Scholar 

  53. Y. Cui, Q. Wei, H. Park, and C.M. Lieber, Science 293 (2001) p. 1289.

    Google Scholar 

  54. R.F. Service, Science 306 (2004) p. 806.

    Google Scholar 

  55. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, and P. Yang, Nature Mater. 4 (2005) p. 455.

    Google Scholar 

  56. X. Duan, Y. Huang, Y. Cui, J. Wang, and C.M. Lieber, Nature 409 (2001) p. 66.

    Google Scholar 

  57. M.H.M. van Weert, O. Wunnicke, A.L. Roest, T.J. Eijkemans, A. Yu Silov, J.E.M. Haverkort, G.W. ‘t Hooft, and E.P.A.M. Bakkers, Appl. Phys. Lett. 88 043109 (2006).

    Google Scholar 

  58. H.S.P. Wong, IBM J. Res. Dev. 46 (2002) p. 133.

    Google Scholar 

  59. Y.-J. Doh, J.A. van Dam, A.L. Roest, E.P.A.M. Bakkers, L.P. Kouwenhoven, and S. De Franceschi, Science 309 (2005) p. 272.

    Google Scholar 

  60. J.A. van Dam, Y.V. Nazarov, E.P.A.M. Bakkers, S. De Franceschi, and L.P. Kouwenhoven, Nature 442 (2006) p. 667.

    Google Scholar 

  61. T. Bryllert, L.-E. Wernersson, L.E. Fröberg, and L. Samuelson, IEEE Electron Dev. Lett. 27 (2006) p. 323.

    Google Scholar 

  62. L.K. van Vugt, S.J. Veen, E.P.A.M. Bakkers, A.L. Roest, and D. Vanmaekelbergh, J. Am. Chem. Soc. 127 (2005) p. 12357.

    Google Scholar 

  63. H.T. Ng, J. Han, T. Yamada, P. Nguyen, Y.P. Chen, and M. Meyyappan, Nano Lett. 4 (2004) p. 1247.

    Google Scholar 

  64. J. Goldberger, A.I. Hochbaum, R. Fan, and P. Yang, Nano Lett. 5 (2006) p. 973.

    Google Scholar 

  65. V. Schmidt, H. Riel, S. Senz, S. Karg, W. Riess, and U. Gösele, Small 2 (2006) p. 85.

    Google Scholar 

  66. W. Seifert, M. Borgström, K. Deppert, K.A. Dick, J. Johansson, M.W. Larsson, T. Mårtensson, N. Sköld, C.P.T. Svensson, B.A. Wacaser, L.R. Wallenberg, and L. Samuelson, J. Cryst. Growth 272 (2004) p. 211.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakkers, E.P.A.M., Borgström, M.T. & Verheijen, M.A. Epitaxial Growth of III-V Nanowires on Group IV Substrates. MRS Bulletin 32, 117–122 (2007). https://doi.org/10.1557/mrs2007.43

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2007.43

Navigation