Skip to main content

Advertisement

Log in

Silicon-Based Microchemical Systems: Characteristics and Applications

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Microfabrication techniques and scale-up by replication promise to transform classical batch-wise chemical laboratory procedures into integrated systems capable of providing new understanding and control of fundamental processes. Such integrated microchemical systems would enable rapid, continuous discovery and development of new products with the use of fewer resources and the generation of less waste. Additional opportunities exist for on-demand and on-site synthesis, with perhaps the first applications emerging in portable energy sources based on the conversion of hydrocarbons to hydrogen for miniaturized fuel cells.

Microchemical systems can be realized in a wide range of materials including stainless steel, glass, ceramics, silicon, and polymers. The high mechanical strength, excellent temperature characteristics, and good chemical compatibility of silicon combined with the existing fabrication infrastructure for microelectromechanical systems (MEMS) offer advantages in fabricating chemical microsystems that are compatible with strong solvents and operate at elevated temperatures and pressures. Furthermore, silicon-based microsensors for flow, pressure, and temperature can readily be integrated into the systems.

Microsystems for broad chemical applications should be discovery tools that can easily be applied by chemists and materials scientists while also having a convincing “scale-out” to at least small production levels. The interplay of both these capabilities is important in making microreaction technology successful. Perhaps the largest impact of microchemical systems will ultimately be the ability to explore reaction conditions and chemistry at conditions that are otherwise difficult to establish in the laboratory. Case studies are selected to illustrate microfluidic applications in which silicon adds advantages, specifically, integration of physical sensors and infrared spectroscopy, highthroughput experimentation in moisture-sensitive organic synthesis, controlled synthesis of nanoparticles (quantum dots), multiphase and heterogeneous catalytic reactions at elevated temperatures and pressures, and thermal management in the conversion of hydrocarbons to hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Ehrfeld, V. Hessel, and H. Lowe, Microreactors: New Technology for Modern Chemistry (Wiley-VCH, Weinheim, Germany, 2000).

    Google Scholar 

  2. T. Schwalbe, V. Autze, M. Hohmann, and W. Stirner, Org. Proc. Res. Dev. 8 (2004) p. 440.

    Google Scholar 

  3. V. Hessel, S. Hardt, and H. Lowe, Chemical Micro Process Engineering: Fundamentals, Modelling and Reactions (Wiley-VCH, Weinheim, Germany, 2004).

    Google Scholar 

  4. K. Jahnisch, V. Hessel, H. Lowe, and M. Baerns, Angew. Chem. Int. Ed. 43 (2004) p. 406.

    Google Scholar 

  5. P.D.I. Fletcher, S.J. Haswell, E. Pombo-Villar, B.H. Warrington, P. Watts, S.Y.F. Wong, and X.L. Zhang, Tetrahedron 58 (2002) p. 4735.

    Google Scholar 

  6. A.W. Chow, AIChE J. 48 (2002) p. 1590.

    Google Scholar 

  7. Y. Kikutani, T. Horiuchi, K. Uchiyama, H. Hisamoto, M. Tokeshi, and T. Kitamori, Lab Chip 3 (2003) p. 51.

    Google Scholar 

  8. R. Knitter, D. Gohring, P. Risthaus, and J. Hausselt, Microsys. Technol. 7 (2001) p. 85.

    Google Scholar 

  9. K.F. Jensen, Chem. Eng. Sci. 56 (2001) p. 293.

    Google Scholar 

  10. Y.N. Xia and G.M. Whitesides, Angew. Chem. Int. Ed. 37 (1998) p. 551.

    Google Scholar 

  11. J.C. McDonald and G.M. Whitesides, Acc. Chem. Res. 35 (2002) p. 491.

    Google Scholar 

  12. A.E. Guber, M. Heckele, D. Herrmann, A. Muslija, V. Saile, L. Eichhorn, T. Gietzelt, W. Hoffmann, P.C. Hauser, J. Tanyanyiw, A. Gerlach, N. Gottschlich, and G. Knebel, Chem. Eng. J. 101 (2004) p. 447.

    Google Scholar 

  13. J.P. Rolland, R.M. Van Dam, D.A. Schorzman, S.R. Quake, and J.M. Desimone, J. Amer. Chem. Soc. 126 (2004) p. 2322.

    Google Scholar 

  14. R.R. Tummala, Proc. IEEE 80 (1992) p. 1924.

    Google Scholar 

  15. Q.-S. Pu, R. Luttge, H.J.G.E. Gardeniers, and A.V.D. Berg, Electrophoresis 24 (2003) p. 162.

    Google Scholar 

  16. G.M. Whitesides, E. Ostuni, S. Takayama, X.Y. Jiang, and D.E. Ingber, Annu. Rev. Biomed. Eng. 3 (2001) p. 335.

    Google Scholar 

  17. M.A. Unger, H.P. Chou, T. Thorsen, A. Scherer, and S.R. Quake, Science 288 (2000) p. 113.

    Google Scholar 

  18. T. Thorsen, S.J. Maerkl, and S.R. Quake, Science 298 (2002) p. 580.

    Google Scholar 

  19. R.J. Jackman, T.M. Floyd, R. Ghodssi, M.A. Schmidt, and K.F. Jensen, J. Micromech. Microeng. 11 (2001) p. 263.

    Google Scholar 

  20. K.D. Wise, Proc. IEEE 86 (1998) p. 1531.

    Google Scholar 

  21. A.A. Ayon, R. Braff, C.C. Lin, H.H. Sawin, and M.A. Schmidt, J. Electrochem. Soc. 146 (1999) p. 339.

    Google Scholar 

  22. M.J. Madou, Fundamentals of Microfabrication: The Science of Miniaturization, 2nd ed. (CRC Press, Boca Raton, Fla., 2002).

    Google Scholar 

  23. A. Mehra, X. Zhang, A.A. Ayon, I.A. Waitz, M.A. Schmidt, and C.M. Spadaccini, J. Microelectromech. Sys. 9 (2000) p. 517.

    Google Scholar 

  24. N. De Mas, A. Günther, M.A. Schmidt, and K.F. Jensen, Ind. Eng. Chem. Res. 42 (2003) p. 698.

    Google Scholar 

  25. L.R. Arana, S.B. Schaevitz, A.J. Franz, M.A. Schmidt, and K.F. Jensen, J. Microelectromech. Sys. 12 (2003) p. 600.

    Google Scholar 

  26. R. Srinivasan, I.-M. Hsing, P.E. Berger, K.F. Jensen, S.L. Firebaugh, M.A. Schmidt, M.P. Harold, J.J. Lerou, and J.F. Ryley, AIChE J. 43 (1997) p. 3059.

    Google Scholar 

  27. M.W. Losey, R.J. Jackman, S.L. Firebaugh, M.A. Schmidt, and K.F. Jensen, J. Microelectromech. Sys. 11 (2002) p. 709.

    Google Scholar 

  28. J. Drott, K. Lindstrom., L. Rosengren, and T. Laurell., J. Micromech. Microeng. 7 (1997) p. 14.

    Google Scholar 

  29. C.K. Fredrickson and Z.H. Fan, Lab Chip 4 (2004) p. 526.

    Google Scholar 

  30. D.M. Ratner, E.R. Murphy, M. Jhunjhunwala, D.A. Snyder, K.F. Jensen, and P.H. Seeberger, Chem. Commun. 5 (2005) p. 578.

    Google Scholar 

  31. A.P. London, A.A. Ayon, A.H. Epstein, S.M. Spearing, T. Harrison, Y. Peles, and J.L. Kerrebrock, Sens. Actuators, A 92 (2001) p. 351.

    Google Scholar 

  32. E. Garcia-Egido, V. Spikmans, S.Y.F. Wong, and B.H. Warrington, Lab Chip 3 (2003) p. 73.

    Google Scholar 

  33. S.D. Senturia, Microsystem Design (Kluwer Academic, Boston, 2001).

    Google Scholar 

  34. T. Kraus, A. Günther, N. De Mas, M.A. Schmidt, and K.F. Jensen, Exp. Fluids 36 (2004) p. 819.

    Google Scholar 

  35. N. De Mas, A. Günther, T. Kraus, M.A. Schmidt, and K.F. Jensen, Ind. Eng. Chem. Res. (2005) p. 8997.

  36. S.L. Firebaugh, K.F. Jensen, and M.A. Schmidt, J. Microelectromech. Syst. 7 (1998) p. 128.

    Google Scholar 

  37. T.M. Floyd, M.A. Schmidt, and K.F. Jensen, Ind. Eng. Chem. Res. 44 (2005) p. 2351.

    Google Scholar 

  38. D.J. Quiram, I.M. Hsing, A.J. Franz, K.F. Jensen, and M.A. Schmidt, Chem. Eng. Sci. 55 (2000) p. 3065.

    Google Scholar 

  39. A.F. Lopeandia, L.L. Cerdo, M.T. Clavaguera-Mora, L.R. Arana, K.F. Jensen, F.J. Munoz, and J. Rodriguez-Viejo, Rev. Sci. Instrum. 76 065104/1 (2005).

    Google Scholar 

  40. T. Vilkner, D. Janasek, and A. Manz, Anal. Chem. 76 (2004) p. 3373.

    Google Scholar 

  41. P.A. Auroux, D. Iossifidis, D.R. Reyes, and A. Manz, Anal. Chem. 74 (2002) p. 2637.

    Google Scholar 

  42. D.R. Reyes, D. Iossifidis, P.A. Auroux, and A. Manz, Anal. Chem. 74 (2002) p. 2623.

    Google Scholar 

  43. H. Lu, M.A. Schmidt, and K.F. Jensen, Lab Chip 1 (2001) p. 22.

    Google Scholar 

  44. S.L. Firebaugh, K.F. Jensen, and M.A. Schmidt, J. Microelectromech. Syst. 10 (2001) p. 232.

    Google Scholar 

  45. S.L. Firebaugh, K.F. Jensen, and M.A. Schmidt, J. Appl. Phys. 92 (2002) p. 1555.

    Google Scholar 

  46. R. Herzig-Marx, K.T. Queeney, R.J. Jackman, M.A. Schmidt, and K.F. Jensen, Anal. Chem. 76 (2004) p. 6476.

    Google Scholar 

  47. M. Grabarnick and S. Zamir, Org. Process Res. Dev. 7 (2003) p. 237.

    Google Scholar 

  48. P.H. Seeberger and D.B. Werz, Nat. Rev. Drug Discov. 4 (2005) p. 751.

    Google Scholar 

  49. J.M. Ottino and S. Wiggins, Philos. Trans. R. Soc. Lond. A 362 (2004) p. 923.

    Google Scholar 

  50. A.D. Stroock, S.K.W. Dertinger, A. Ajdari, I. Mezic, H.A. Stone, and G.M. Whitesides, Science 295 (2002) p. 647.

    Google Scholar 

  51. I. Shestopalov, J.D. Tice, and R.F. Ismagilov, Lab Chip 4 (2004) p. 316.

    Google Scholar 

  52. H. Song, J.D. Tice, and R.F. Ismagilov, Angew. Chem. Int. Ed. 42 (2003) p. 768.

    Google Scholar 

  53. A. Günther, M. Jhunjhunwala, M. Thalmann, M.A. Schmidt, and K.F. Jensen, Langmuir 21 (2005) p. 1547.

    Google Scholar 

  54. A. Günther, S.A. Khan, M. Thalmann, F. Trachsel, and K.F. Jensen, Lab Chip 4 (2004) p. 278.

    Google Scholar 

  55. B.K.H. Yen, A. Günther, M.A. Schmidt, K.F. Jensen, and M.G. Bawendi, Angew. Chem. Int. Ed. 44 (2005) p. 5447.

    Google Scholar 

  56. S.K. Ajmera, C. Delattre, M.A. Schmidt, and K.F. Jensen, J. Catal. 209 (2002) p. 401.

    Google Scholar 

  57. S.K. Ajmera, C. Delattre, M.A. Schmidt, and K.F. Jensen, Stud. Surf. Sci. Catal. 145 (2003) p. 97.

    Google Scholar 

  58. M.W. Losey, M.A. Schmidt, and K.F. Jensen, Ind. Eng. Chem. Res. 40 (2001) p. 2555.

    Google Scholar 

  59. J. Kobayashi, Y. Mori, K. Okamoto, R. Akiyama, M. Ueno, T. Kitamori, and S. Kobayashi, Science 304 (2004) p. 1305.

    Google Scholar 

  60. R.M. Tiggelaar, P. Van Male, J.W. Berenschot, J.G.E. Gardeniers, R.E. Oosterbroek, M.H.J.M. De Croon, J.C. Schouten, A. Van Den Berg, and M.C. Elwenspoek, Sens. Actuators, A 119 (2005) p. 196.

    Google Scholar 

  61. R.M. Tiggelaar, J.W. Berenschot, J.H. De Boer, R.G.P. Sanders, J.G.E. Gardeniers, R.E. Oosterbroek, A. Van Den Berg, and M.C. Elwenspoek, Lab Chip 5 (2005) p. 326.

    Google Scholar 

  62. Y.H. Ma, I.P. Mardilovich, and E.E. Engwall, Annu. N.Y. Acad. Sci. 984 (2003) p. 346.

    Google Scholar 

  63. A.J. Franz, K.F. Jensen, M.A. Schmidt, and S. Firebaugh, U.S. Patent 6,541,676 (2003).

    Google Scholar 

  64. A. Franz, K.F. Jensen, and M.A. Schmidt, Tech. Dig. 12th Int. Conf. Microelectromechanical Systems (Orlando, Fla., 1999) p. 382.

  65. B.A. Wilhite, M.A. Schmidt, and K.F. Jensen, Ind. Eng. Chem. Res. 43 (2004) p. 7083.

    Google Scholar 

  66. H.D. Tong, F.C. Gielens, J.G.E. Gardeniers, H.V. Jansen, J.W. Berenschot, M.J. De Boer, J.H. De Boer, C.J.M. Van Rijn, and M.C. Elwenspoek, J. Microelectromech. Sys. 14 (2005) p. 113.

    Google Scholar 

  67. H.D. Tong, F.C. Gielens, J.G.E. Gardeniers, H.V. Jansen, C.J.M. Van Rijn, M.C. Elwenspoek, and W. Nijdam, Ind. Eng. Chem. Res. 43 (2004) p. 4182.

    Google Scholar 

  68. H.D. Tong, J.W.E. Berenschot, M.J. De Boer, J.G.E. Gardeniers, H. Wensink, H.V. Jansen, W. Nijdam, M.C. Elwenspock, E.C. Gielens, and C.J.M. Van Rijn, J. Microelectromech. Sys. 12 (2003) p. 622.

    Google Scholar 

  69. D.J. Quiram, K.F. Jensen, M.A. Schmidt, J.F. Ryley, P.L. Mills, M.D. Wetzel, J.W. Ashmead, R.D. Bryson, D.J. Kraus, and A.P. Stamford, 2000 Solid-State Sensor and Actuator Workshop (Hilton Head, S.C., 2000) p. 166.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, K.F. Silicon-Based Microchemical Systems: Characteristics and Applications. MRS Bulletin 31, 101–107 (2006). https://doi.org/10.1557/mrs2006.23

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2006.23

Keywords

Navigation