Skip to main content
Log in

Self-Assembly of Block Copolymers for Photonic-Bandgap Materials

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Self-assembled block copolymer systems with an appropriate molecular weight to produce a length scale that will interact with visible light are an alternative platform material for the fabrication of large-area, well-ordered photonic-bandgap structures at visible and near-IR frequencies.Over the past years, one-, two-, and three-dimensional photonic crystals have been demonstrated with various microdomain structures created through microphase separation of block copolymers. The size and shape of periodic microstructures of block copolymers can be readily tuned by molecular weight, relative composition of the copolymer, and blending with homopolymers or plasticizers.The versatility of photonic crystals based on block copolymers is further increased by incorporating inorganic nanoparticles or liquid-crystalline guest molecules (or using a liquid-crystalline block), or by selective etching of one of the microdomains and backfilling with high-refractive-index materials. This article presents an overview of photonic-bandgap materials enabled by self-assembled block copolymers and discusses the morphology and photonic properties of block-copolymer-based photonic crystals containing nanocomposite additives.We also provide a view of the direction of future research, especially toward novel photonic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Park, J. Yoon, and E.L. Thomas, Polymer 44 (2003)p. 6725.

    Article  CAS  Google Scholar 

  2. E.L. Thomas and R.L. Lescanec, Philos. Trans. R. Soc. London, Ser. A 348 (1994)p. 149.

    Article  CAS  Google Scholar 

  3. A.C. Edrington, A.M. Urbas, P. DeRege, C.X. Chen, T.M. Swager, N. Hadjichristidis, M. Xenidou, L.J. Fetters, J.D. Joannopoulos, Y. Fink, and E.L. Thomas, Adv. Mater. 13 (2001)p. 421.

    Article  CAS  Google Scholar 

  4. B. Temelkuran, S.D. Hart, G. Benoit, J.D. Joannopoulos, and Y. Fink, Nature 420 (2002)p. 650.

    Article  CAS  Google Scholar 

  5. E. Chow, A. Grot, L.W. Mirkarimi, M. Sigalas, and G. Girolami, Optics Lett. 29 (2004)p. 1093.

    Article  CAS  Google Scholar 

  6. M. Scalora, J.P. Dowling, C.M. Bowden, and M.J. Bloemer, Phys. Rev. Lett. 73 (1994)p. 1368.

    Article  CAS  Google Scholar 

  7. J.D. Joannopoulos, R.D. Meade, and J.N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995).

    Google Scholar 

  8. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, Science 289 (2000)p. 604.

    Article  CAS  Google Scholar 

  9. M.H. Qi, E. Lidorikis, P.T. Rakich, S.G. Johnson, J.D. Joannopoulos, E.P. Ippen, and H.I. Smith, Nature 429 (2004)p. 538.

    Article  CAS  Google Scholar 

  10. M. Campbell, D.N. Sharp, M.T. Harrison, R.G. Denning, and A.J. Turberfield, Nature 404 (2000)p.53.

    Article  CAS  Google Scholar 

  11. C.K. Ullal, M. Maldovan, M. Wohlgemuth, and E.L. Thomas, J. Opt. Soc. Am. A: Opt. Image Sci. Vis. 20 (2003)p. 948.

    Article  Google Scholar 

  12. B.T. Holland, C.F. Blanford, and A. Stein, Science 281 (1998)p. 538.

    Article  CAS  Google Scholar 

  13. P.V. Braun and P. Wiltzius, Nature 402 (1999)p. 603.

    Article  CAS  Google Scholar 

  14. J. Wijnhoven and W.L. Vos, Science 281 (1998)p. 802.

    Article  CAS  Google Scholar 

  15. Y. Fink, A.M. Urbas, M.G. Bawendi, J.D. Joannopoulos, and E.L. Thomas, J. Lightwave Technol. 17 (1999)p. 1963.

    Article  CAS  Google Scholar 

  16. A. Urbas, Y. Fink, and E.L. Thomas, Macromolecules 32 (1999)p. 4748.

    Article  CAS  Google Scholar 

  17. A. Urbas, R. Sharp, Y. Fink, E.L. Thomas, M. Xenidou, and L.J. Fetters, Adv. Mater. 12 (2000)p. 812.

    Article  CAS  Google Scholar 

  18. P. Yeh, H. Yariv, and C. Shan, J. Opt. Soc. Am. 67 (1977)p. 423.

    Article  Google Scholar 

  19. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, Cambridge, UK, 1999).

    Book  Google Scholar 

  20. T. Deng, C.T. Chen, C. Honeker, and E.L. Thomas, Polymer 44 (2003)p. 6549.

    Article  CAS  Google Scholar 

  21. E. Yablonovitch, Phys. Rev. Lett. 58 (1987)p. 2059.

    Article  CAS  Google Scholar 

  22. S. John, Phys. Rev. Lett. 58 (1987)p. 2486.

    Article  CAS  Google Scholar 

  23. E. Yablonovitch and T.J. Gmitter, Phys. Rev. Lett. 63 (1989)p. 1950.

    Article  CAS  Google Scholar 

  24. H.S. Sozuer, J.W. Haus, and R. Inguva, Phys. Rev. B 45 (1992)p. 13962.

    Article  CAS  Google Scholar 

  25. C.T. Chan, K.M. Ho, and C.M. Soukoulis, Europhys. Lett. 16 (1991)p. 563.

    Article  CAS  Google Scholar 

  26. A.M. Urbas, M. Maldovan, P. DeRege, and E.L. Thomas, Adv. Mater. 14 (2002)p. 1850.

    Article  CAS  Google Scholar 

  27. M. Maldovan, A.M. Urbas, N. Yufa, W.C. Carter, and E.L. Thomas, Phys. Rev. B 65 165123 (2002).

    Article  CAS  Google Scholar 

  28. M. Bockstaller, R. Kolb, and E.L. Thomas, Adv. Mater. 13 (2001)p. 1783.

    Article  CAS  Google Scholar 

  29. M.R. Bockstaller and E.L. Thomas, J. Phys. Chem. B 107 (2003)p. 10017.

    Article  CAS  Google Scholar 

  30. M.R. Bockstaller and E.L. Thomas, Phys. Rev. Lett. 93 166106 (2004).

    Article  CAS  Google Scholar 

  31. J. Huh, V.V. Ginzburg, and A.C. Balazs, Macromolecules 33 (2000)p. 8085.

    Article  CAS  Google Scholar 

  32. R.B. Thompson, V.V. Ginzburg, M.W. Matsen, and A.C. Balazs, Science 292 (2001)p. 2469.

    Article  CAS  Google Scholar 

  33. J.Y. Lee, R.B. Thompson, D. Jasnow, and A.C. Balazs, Macromolecules 35 (2002)p. 4855.

    Article  CAS  Google Scholar 

  34. G.A. Buxton, J.Y. Lee, and A.C. Balazs, Macromolecules 36 (2003)p. 9631.

    Article  CAS  Google Scholar 

  35. M.R. Bockstaller, Y. Lapetnikov, S. Margel, and E.L. Thomas, J. Am. Chem. Soc. 127 (2003)p. 5276.

    Article  CAS  Google Scholar 

  36. J.J. Chiu, B.J. Kim, E.J. Kramer, and D.J. Pine, J. Am. Chem. Soc. 127 (2005)p. 5036.

    Article  CAS  Google Scholar 

  37. M.R. Bockstaller, R.A. Mickiewicz, and E.L. Thomas, Adv. Mater. 17 (2005)p. 1331.

    Article  CAS  Google Scholar 

  38. C. Osuji, C.Y. Chao, I. Bita, C.K. Ober, and E.L. Thomas, Adv. Funct. Mater. 12 (2002)p. 753.

    Article  CAS  Google Scholar 

  39. S. Valkama, H. Kosonen, J. Ruokolainen, T. Haatainen, M. Torkkeli, R. Serimaa, G. Ten Brinke, and O. Ikkala, Nature Mater. 3 (2004)p. 872.

    Article  CAS  Google Scholar 

  40. A. Urbas, “Block Copolymer Photonic Crystals,” PhD Thesis, Massachusetts Institute of Technology (2003).

    Google Scholar 

  41. C. De Rosa, C. Park, B. Lotz, J.C. Wittmann, L.J. Fetters, and E.L. Thomas, Macromolecules 33 (2000)p. 4871.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoon, J., Lee, W. & Thomas, E.L. Self-Assembly of Block Copolymers for Photonic-Bandgap Materials. MRS Bulletin 30, 721–726 (2005). https://doi.org/10.1557/mrs2005.270

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2005.270

Keywords

Navigation